Introduction to a Special Issue on Genotype by Environment Interaction

Wiley - Tập 56 Số 5 - Trang 2081-2089 - 2016
Natalia de León1, Jean‐Luc Jannink2, Jode W. Edwards3, Shawn M. Kaeppler1
1Dep. of Agronomy, UW-Madison, Madison, WI, 53706
2USDA-ARS, Cornell Univ., Ithaca, NY, 14853
3Dep. of Agronomy Iowa State Univ. Ames IA 50011

Tóm tắt

Expression of a phenotype is a function of the genotype, the environment, and the differential sensitivity of certain genotypes to different environments, also known as genotype by environment (G × E) interaction. This special issue ofCrop Scienceincludes a collection of manuscripts that reviews the long history of G ×E research, describes new and innovative ideas, and outlines future challenges. Improving our understanding of these complex interactions is expected to accelerate plant breeding progress, minimize risk through improved cultivar deployment, and improve the efficiency of crop production through informed agriculture. Achieving these goals requires the integration of broad and diverse science and technology disciplines.

Từ khóa


Tài liệu tham khảo

10.1126/science.1060701

10.1111/j.1469-8137.2012.04112.x

10.1073/pnas.0811734106

10.2135/cropsci1964.0011183X000400050021x

10.1111/j.1365-294X.2012.05522.x

10.1038/hdy.2013.33

10.1007/s10682-010-9372-7

10.1016/S0065-2660(08)60048-6

10.2135/cropsci2010.09.0563

10.2135/cropsci2010.09.0562

10.2135/cropsci2011.06.0299

10.1023/A:1002918008679

Comstock R.E., 1977, Proc. Int'l Conf. on Quantitative Genetics, 705

10.1016/S0378-4290(99)00048-9

Cooper M., 1996, Plant adaptation and crop improvement, 529, 10.1079/9780851991085.0000

10.1093/jxb/eru064

10.2135/cropsci1997.0011183X003700040024x

Cooper M., 2016, Use of crop growth models with whole‐genome prediction: Application to a maize multienvironment trial, Crop Sci., 56, 10.2135/cropsci2015.08.0512

Crossa J., 2016, Extending the marker × environment interaction model for genomic‐enabled prediction and genome‐wide association analysis in durum wheat, Crop Sci., 56, 10.2135/cropsci2015.04.0260

10.1146/annurev-arplant-042809-112122

10.1146/annurev-ecolsys-110512-135806

10.1111/j.1749-6632.2010.05703.x

10.1016/S0169-5347(97)01274-3

10.1007/BF00056241

10.2135/cropsci1966.0011183X000600010011x

10.2135/cropsci2015.07.0408

Elias A.A., 2016, Half a century of studying genotype by environment interactions in plant breeding experiments, Crop Sci., 56, 10.2135/cropsci2015.01.0061

10.1016/j.tplants.2014.01.001

10.1086/281736

10.1071/AR9630742

10.4141/cjps78-157

10.1038/hdy.1973.90

Gabriel K., 1978, Least squares approximation of matrices by additive and multiplicative models, J. R. Stat. Soc. B, 40, 186, 10.1111/j.2517-6161.1978.tb01663.x

10.2307/2531585

10.1007/BF02289676

Grogan S.M., 2016, Phenotypic plasticity of winter wheat heading date and grain yield across the U.S. Great Plains, Crop Sci., 56, 10.2135/cropsci2015.06.0357

10.1111/j.1365-294X.2010.04680.x

10.1126/science.1209244

Hayes B.J., 2016, Models for genome × environment interaction: Examples in livestock, Crop Sci., 56, 10.2135/cropsci2015.07.0451

10.1007/s00122-013-2231-5

10.2135/cropsci2012.07.0420

10.1007/s00122-013-2243-1

Jarquín D., 2016, A hierarchical Bayesian estimation model for multienvironment plant breeding trials in successive years, Crop Sci., 56, 10.2135/cropsci2015.08.0475

10.1016/j.pbi.2013.02.001

10.1146/annurev.cellbio.042308.113411

Kleinknecht K., 2016, A simulation‐based approach for evaluating the efficiency of multienvironment trial designs, Crop Sci., 56, 10.2135/cropsci2015.07.0405

Lado B., 2016, Modeling genotype by environment interaction for genomic selection with unbalanced data from a wheat (Triticum aestivum L.) breeding program, Crop Sci., 56, 10.2135/cropsci2015.04.0207

Lee E.A., 2016, Involvement of year‐to‐year variation in thermal time, solar radiation, and soil available moisture in genotype‐by‐environment effects in maize, Crop Sci., 56

10.2135/cropsci1986.0011183X002600050012x

Malosetti M., 2016, Predicting responses in multiple environments: Issues in relation to genotype × environment interactions, Crop Sci., 56, 10.2135/cropsci2015.05.0311

Malosetti M., 2013, The statistical analysis of multi‐environment data: Modeling genotype‐by‐environment interaction and its genetic basis, Front. Phys., 4, 44, 10.3389/fphys.2013.00044

10.1073/pnas.1210506109

10.1016/j.pbi.2011.03.004

Paderewski J., 2016, AMMI analysis of four‐way genotype × location × management × year data from a wheat trial in Poland, Crop Sci. 56 (this issue)., 10.2135/cropsci2015.03.0152

10.1093/pcp/pcs044

10.1016/j.tree.2005.06.001

10.56021/9780801867880

10.1101/gad.524609

10.2135/cropsci1981.0011183X002100060033x

10.1093/jxb/eru061

10.1146/annurev.es.24.110193.000343

10.1038/hdy.1972.87

10.1017/S0021859605005587

10.1371/journal.pone.0130855

Eeuwijk F., 2016, What should students in plant breeding know about the statistical aspects of genotype × environment?, Crop Sci., 56

10.1201/9781420049374.ch2

Yan W., 2016, Analysis and handling of G x E in a practical breeding program, Crop Sci., 56

10.2135/cropsci2000.403597x

10.1111/nph.12010

10.1073/pnas.1103202108