Introduction to State-of-the-Art Multidimensional Time-Resolved Spectroscopy Methods

Springer Science and Business Media LLC - Tập 376 - Trang 1-25 - 2018
Jan Philip Kraack1, Tiago Buckup2
1Department of Chemistry, University of Zürich, Zurich, Switzerland
2Physikalisch-Chemisches Institut, Universität Heidelberg, Heidelberg, Germany

Tóm tắt

The field of multidimensional laser spectroscopy comprises a variety of highly developed state-of-the-art methods, which exhibit broad prospects for applications in several areas of natural, material, and even medical sciences. This collection summarizes the main achievements from this area and gives basic introductory insight into what is currently possible with such methods. In the present introductory contribution, we briefly outline the general concept behind multidimensional laser spectroscopy, for instance by highlighting the often-employed analogy between multidimensional laser spectroscopy and NMR methods. Our initial introduction is followed by an overview of the most important and widely used multidimensional spectroscopies’ classification. Special emphasis is placed on how the contributing spectral region defines a natural way of grouping the techniques in terms of their information content. On this basis, we introduce the most important graphical ways in which multidimensional data is generally visualized. This is done by comparing specifically temporal and spectra axes that make up each single multidimensional data plot. Several central experimental methods that are common to the various techniques reviewed in this collection are addressed in the perspective of recent developments and their impact on the field. These methods include, for example, heterodyne/homodyne detection, fast scanning, spatial light modulation, and sparse sampling methods. Importantly, we address the central and fundamental questions where multidimensional ultrafast spectroscopy can be used to help understanding chemical dynamics and intermolecular interactions. Finally, we briefly pinpoint what we believe are the main open questions and what will be the future directions for technical developments and promotion of scientific understanding that multidimensional spectroscopy can provide for chemistry, physics, and life sciences.

Tài liệu tham khảo

Dantus M, Rosker MJ, Zewail AH (1988) Femtosecond real-time probing of reactions. 2. The dissociation reaction of ICN. J Chem Phys 89(10):6128–6140. https://doi.org/10.1063/1.455428 Sundstrom V (2008) Femtobiology. Annu Rev Phys Chem 59:53–77. https://doi.org/10.1146/annurev.physchem.59.032607.093615 Brinks D, Hildner R, van Dijk E, Stefani FD, Nieder JB, Hernando J, van Hulst NF (2014) Ultrafast dynamics of single molecules. Chem Soc Rev 43(8):2476–2491. https://doi.org/10.1039/c3cs60269a Lou YB, Chen XB, Samia AC, Burda C (2003) Femtosecond spectroscopic investigation of the carrier lifetimes in digenite quantum dots and discrimination of the electron and hole dynamics via ultrafast interfacial electron transfer. J Phys Chem B 107(45):12431–12437. https://doi.org/10.1021/jp035618k Robel I, Subramanian V, Kuno M, Kamat PV (2006) Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J Am Chem Soc 128(7):2385–2393. https://doi.org/10.1021/ja056494n Listorti A, O’Regan B, Durrant JR (2011) Electron transfer dynamics in dye-sensitized solar cells. Chem Mater 23(15):3381–3399. https://doi.org/10.1021/cm200651e Gelinas S, Rao A, Kumar A, Smith SL, Chin AW, Clark J, van der Poll TS, Bazan GC, Friend RH (2014) Ultrafast long-range charge separation in organic semiconductor photovoltaic diodes. Science 343(6170):512–516. https://doi.org/10.1126/science.1246249 Falke SM, Rozzi CA, Brida D, Maiuri M, Amato M, Sommer E, De Sio A, Rubio A, Cerullo G, Molinari E, Lienau C (2014) Coherent ultrafast charge transfer in an organic photovoltaic blend. Science 344(6187):1001–1005. https://doi.org/10.1126/science.1249771 Jakowetz AC, Bohm ML, Zhang JB, Sadhanala A, Huettner S, Bakulin AA, Rao A, Friend RH (2016) What controls the rate of ultrafast charge transfer and charge separation efficiency in organic photovoltaic blends. J Am Chem Soc 138(36):11672–11679. https://doi.org/10.1021/jacs.6b05131 Kirilyuk A, Kimel AV, Rasing T (2010) Ultrafast optical manipulation of magnetic order. Rev Mod Phys 82(3):2731–2784. https://doi.org/10.1103/RevModPhys.82.2731 Stamm C, Kachel T, Pontius N, Mitzner R, Quast T, Holldack K, Khan S, Lupulescu C, Aziz EF, Wietstruk M, Durr HA, Eberhardt W (2007) Femtosecond modification of electron localization and transfer of angular momentum in nickel. Nat Mater 6(10):740–743. https://doi.org/10.1038/nmat1985 Reichardt C, Guo C, Crespo-Hernandez CE (2011) Excited-state dynamics in 6-thioguanosine from the femtosecond to microsecond time scale. J Phys Chem B 115(12):3263–3270. https://doi.org/10.1021/jp112018u Teuchner K, Ehlert J, Freyer W, Leupold D, Altmeyer P, Stucker M, Hoffmann K (2000) Fluorescence studies of melanin by stepwise two-photon femtosecond laser excitation. J Fluoresc 10(3):275–281. https://doi.org/10.1023/a:1009453228102 Ye T, Hong L, Garguilo J, Pawlak A, Edwards GS, Nemanich RJ, Sarna T, Simon JD (2006) Photoionization thresholds of melanins obtained from free electron laser-photoelectron emission microscopy, femtosecond transient absorption spectroscopy and electron paramagnetic resonance measurements of oxygen photoconsumption. Photochem Photobiol 82(3):733–737. https://doi.org/10.1562/2006-01-02-ra-762 Shim S-H, Gupta R, Ling YL, Strasfeld DB, Raleigh DP, Zanni MT (2009) Two-dimensional IR spectroscopy and isotope labeling defines the pathway of amyloid formation with residue-specific resolution. Proc Natl Acad Sci USA 106(16):6614–6619. https://doi.org/10.1073/pnas.0805957106 Alfano RR, Demos SG, Galland P, Gayen SK, Guo Y, Ho PP, Liang X, Liu F, Wang L, Wang QZ, Wang WB (1998) Time-resolved and nonlinear optical imaging for medical applications. Ann N Y Acad Sci 838(1):14–28. https://doi.org/10.1111/j.1749-6632.1998.tb08184.x Tashiro H, Yajima T (1974) Picosecond absorption spectroscopy of excited-states of dye molecules. Chem Phys Lett 25(4):582–586. https://doi.org/10.1016/0009-2614(74)85373-x Shapiro SL, Auston DH (1977) Ultrashort light pulses: picosecond techniques and applications. Topics in applied physics v 18. Springer, Berlin van Stokkum IHM, Larsen DS, van Grondelle R (2004) Global and target analysis of time-resolved spectra. Biochim Biophys Acta Bioenerg 1657(2–3):82–104. https://doi.org/10.1016/j.bbabio.2004.04.011 Ruckebusch C, Sliwa M, Pernot P, de Juan A, Tauler R (2012) Comprehensive data analysis of femtosecond transient absorption spectra: a review. J Photochem Photobiol C Photochem Rev 13(1):1–27. https://doi.org/10.1016/j.jphotochemrev.2011.10.002 Cho MH, Vaswani HM, Brixner T, Stenger J, Fleming GR (2005) Exciton analysis in 2D electronic spectroscopy. J Phys Chem B 109(21):10542–10556 Ginsberg NS, Cheng YC, Fleming GR (2009) Two-dimensional electronic spectroscopy of molecular aggregates. Acc Chem Res 42(9):1352–1363. https://doi.org/10.1021/ar9001075 Ruetzel S, Diekmann M, Nuernberger P, Walter C, Engels B, Brixner T (2014) Multidimensional spectroscopy of photoreactivity. Proc Natl Acad Sci 111(13):4764–4769. https://doi.org/10.1073/pnas.1323792111 Brixner T, Gerber G (2001) Femtosecond polarization pulse shaping. Opt Lett 26(8):557–559. https://doi.org/10.1364/ol.26.000557 Brixner T, Krampert G, Pfeifer T, Selle R, Gerber G, Wollenhaupt M, Graefe O, Horn C, Liese D, Baumert T (2004) Quantum control by ultrafast polarization shaping. Phys Rev Lett 92(20):208301. https://doi.org/10.1103/PhysRevLett.92.208301 Strasfeld DB, Middleton CT, Zanni MT (2009) Mode selectivity with polarization shaping in the mid-IR. New J Phys. https://doi.org/10.1088/1367-2630/11/10/105046 Weiner AM (2011) Ultrafast optical pulse shaping: a tutorial review. Opt Commun 284(15):3669–3692. https://doi.org/10.1016/j.optcom.2011.03.084 Buckup T, Lebold T, Weigel A, Wohlleben W, Motzkus M (2006) Singlet versus triplet dynamics of beta-carotene studied by quantum control spectroscopy. J Photochem Photobiol A 180(3):314–321 Tseng CH, Weinacht TC, Rhoades AE, Murray M, Pearson BJ (2011) Using shaped ultrafast laser pulses to detect enzyme binding. Opt Express 19(24):24638–24646. https://doi.org/10.1364/oe.19.024638 Mohring J, Buckup T, Motzkus M (2012) A quantum control spectroscopy approach by direct UV femtosecond pulse shaping. IEEE J Sel Top Quantum Electron 18(1):449–459. https://doi.org/10.1109/jstqe.2011.2138684 Consani C, Ruetzel S, Nuernberger P, Brixner T (2014) Quantum control spectroscopy of competing reaction pathways in a molecular switch. J Phys Chem A 118(48):11364–11372. https://doi.org/10.1021/jp509382m Nuernberger P, Ruetzel S, Brixner T (2015) Multidimensional electronic spectroscopy of photochemical reactions. Angew Chem Int Ed 54(39):11368–11386. https://doi.org/10.1002/anie.201502974 Zanni MT, Ge NH, Kim YS, Hochstrasser RM (2001) Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination. Proc Natl Acad Sci USA 98(20):11265–11270. https://doi.org/10.1073/pnas.201412998 Cervetto V, Helbing J, Bredenbeck J, Hamm P (2004) Double-resonance versus pulsed Fourier transform two-dimensional infrared spectroscopy: an experimental and theoretical comparison. J Chem Phys 121(12):5935–5942. https://doi.org/10.1063/1.1778163 Consani C, Aubock G, van Mourik F, Chergui M (2013) Ultrafast tryptophan-to-heme electron transfer in myoglobins revealed by UV 2D spectroscopy. Science 339(6127):1586–1589. https://doi.org/10.1126/science.1230758 Tanimura Y, Mukamel S (1993) 2-Dimensional femtosecond vibrational spectroscopy of liquids. J Chem Phys 99(12):9496–9511. https://doi.org/10.1063/1.465484 Wefers MM, Kawashima H, Nelson KA (1995) Automated multidimensional coherent optical spectroscopy with multiple phase-related femtosecond pulses. J Chem Phys 102(22):9133–9136. https://doi.org/10.1063/1.468862 Mukamel S (2000) Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations. Annu Rev Phys Chem 51:691–729. https://doi.org/10.1146/annurev.physchem.51.1.691 Kurnit NA, Hartmann SR, Abella ID (1964) Observation of photon echo. Phys Rev Lett 13(19):567. https://doi.org/10.1103/PhysRevLett.13.567 Hahn EL (1950) Spin echoes. Phys Rev 80(4):580–594. https://doi.org/10.1103/PhysRev.80.580 Hamm P, Zanni MT (2011) Concepts and methods of 2D infrared spectroscopy. Cambridge University Press, Cambridge Pastirk I, Lozovoy VV, Dantus M (2001) Femtosecond photon echo and virtual echo measurements of the vibronic and vibrational coherence relaxation times of iodine vapor. Chem Phys Lett 333(1–2):76–82. https://doi.org/10.1016/s0009-2614(00)01334-8 Pshenichnikov MS, deBoeij WP, Wiersma DA (1996) Coherent control over Liouville-space pathways interference in transient four-wave mixing spectroscopy. Phys Rev Lett 76(25):4701–4704. https://doi.org/10.1103/PhysRevLett.76.4701 Woerner M, Kuehn W, Bowlan P, Reimann K, Elsaesser T (2013) Ultrafast two-dimensional terahertz spectroscopy of elementary excitations in solids. New J Phys. https://doi.org/10.1088/1367-2630/15/2/025039 Tseng CH, Matsika S, Weinacht TC (2009) Two-dimensional ultrafast fourier transform spectroscopy in the deep ultraviolet. Opt Express 17(21):18788–18793. https://doi.org/10.1364/oe.17.018788 Krebs N, Pugliesi I, Hauer J, Riedle E (2013) Two-dimensional Fourier transform spectroscopy in the ultraviolet with sub-20 fs pump pulses and 250–720 nm supercontinuum probe. New J Phys. https://doi.org/10.1088/1367-2630/15/8/085016 Desilvestri S, Fujimoto JG, Ippen EP, Gamble EB, Williams LR, Nelson KA (1985) Femtosecond time-resolved measurements of optic phonon dephasing by impulsive stimulated Raman-scattering in alpha-perylene crystal from 20 to 300K. Chem Phys Lett 116(2–3):146–152. https://doi.org/10.1016/0009-2614(85)80143-3 Dhar L, Rogers JA, Nelson KA (1994) Time-resolved vibrational spectroscopy in the impulsive limit. Chem Rev 94(1):157–193. https://doi.org/10.1021/cr00025a006 Rullière C (2005) Femtosecond laser pulses: principles and experiments. Advanced texts in physics, 2nd edn. Springer, New York Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Worner HJ (2017) Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver. Opt Express 25(22):27506–27518. https://doi.org/10.1364/oe.25.027506 Mukamel S (1995) Principles of nonlinear optical spectroscopy, vol 6. Oxford series in optical and imaging sciences. Oxford University Press, New York Savolainen J, Ahmed S, Hamm P (2013) Two-dimensional Raman-terahertz spectroscopy of water. Proc Natl Acad Sci USA 110(51):20402–20407. https://doi.org/10.1073/pnas.1317459110 Takeuchi S, Ruhman S, Tsuneda T, Chiba M, Taketsugu T, Tahara T (2008) Spectroscopic tracking of structural evolution in ultrafast stilbene photoisomerization. Science 322(5904):1073–1077 Kraack JP, Wand A, Buckup T, Motzkus M, Ruhman S (2013) Mapping multidimensional excited state dynamics using pump-impulsive-vibrational-spectroscopy and pump-degenerate-four-wave-mixing. Phys Chem Chem Phys 15(34):14487–14501 Hauer J, Buckup T, Motzkus M (2007) Pump-degenerate four wave mixing as a technique for analyzing structural and electronic evolution: multidimensional time-resolved dynamics near a conical intersection. J Phys Chem A 111(42):10517–10529 Kraack JP, Buckup T, Motzkus M (2013) Coherent high-frequency vibrational dynamics in the excited electronic state of all-trans retinal derivatives. J Phys Chem Lett 4(3):383–387 Buckup T, Kraack JP, Marek MS, Motzkus M (2013) Vibronic coupling in excited electronic states investigated with resonant 2D Raman spectroscopy. In: XVIIIth international conference on ultrafast phenomena. Vol 41 p 05018. https://doi.org/10.1051/epjconf/20134105018 Bredenbeck J, Helbing J, Behrendt R, Renner C, Moroder L, Wachtveitl J, Hamm P (2003) Transient 2D-IR spectroscopy: snapshots of the nonequilibrium ensemble during the picosecond conformational transition of a small peptide. J Phys Chem B 107(33):8654–8660. https://doi.org/10.1021/jp034552q Kolano C, Helbing J, Kozinski M, Sander W, Hamm P (2006) Watching hydrogen-bond dynamics in a beta-turn by transient two-dimensional infrared spectroscopy. Nature 444(7118):469–472. https://doi.org/10.1038/nature05352 Chung HS, Ganim Z, Jones KC, Tokmakoff A (2007) Transient 2D IR spectroscopy of ubiquitin unfolding dynamics. Proc Natl Acad Sci 104(36):14237–14242. https://doi.org/10.1073/pnas.0700959104 Goodno GD, Dadusc G, Miller RJD (1998) Ultrafast heterodyne-detected transient-grating spectroscopy using diffractive optics. J Opt Soc Am B Opt Phys 15(6):1791–1794. https://doi.org/10.1364/josab.15.001791 Lepetit L, Cheriaux G, Joffre M (1995) Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy. J Opt Soc Am B Opt Phys 12(12):2467–2474. https://doi.org/10.1364/josab.12.002467 Tokmakoff A, Lang MJ, Larsen DS, Fleming GR (1997) Intrinsic optical heterodyne detection of a two-dimensional fifth order Raman response. Chem Phys Lett 272(1–2):48–54. https://doi.org/10.1016/s0009-2614(97)00479-x Krebs N, Pugliesi I, Hauer J, Riedle E (2013) Two-dimensional Fourier transform spectroscopy in the ultraviolet with sub-20 fs pump pulses and 250–720 nm supercontinuum probe. New J Phys 15:17. https://doi.org/10.1088/1367-2630/15/8/085016 Dadusc G, Ogilvie JP, Schulenberg P, Marvet U, Miller RJD (2001) Diffractive optics-based heterodyne-detected four-wave mixing signals of protein motion: from “protein quakes” to ligand escape for myoglobin. Proc Natl Acad Sci USA 98(11):6110–6115. https://doi.org/10.1073/pnas.101130298 Kubarych KJ, Milne CJ, Lin S, Astinov V, Miller RJD (2002) Diffractive optics-based six-wave mixing: heterodyne detection of the full chi(5) tensor of liquid CS2. J Chem Phys 116(5):2016–2042. https://doi.org/10.1063/1.1429961 Cowan ML, Ogilvie JP, Miller RJD (2004) Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes. Chem Phys Lett 386(1–3):184–189. https://doi.org/10.1016/j.cplett.2004.01.027 Brixner T, Mancal T, Stiopkin IV, Fleming GR (2004) Phase-stabilized two-dimensional electronic spectroscopy. J Chem Phys 121(9):4221–4236. https://doi.org/10.1063/1.1776112 Brixner T, Stiopkin IV, Fleming GR (2004) Tunable two-dimensional femtosecond spectroscopy. Opt Lett 29(8):884–886. https://doi.org/10.1364/ol.29.000884 Shim SH, Strasfeld DB, Zanni MT (2006) Generation and characterization of phase and amplitude shaped femtosecond mid-IR pulses. Opt Express 14(26):13120–13130. https://doi.org/10.1364/oe.14.013120 Shim SH, Strasfeld DB, Ling YL, Zanni MT (2007) Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide. Proc Natl Acad Sci USA 104(36):14197–14202. https://doi.org/10.1073/pnas.0700804104 Shim SH, Zanni MT (2009) How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping. Phys Chem Chem Phys 11(5):748–761. https://doi.org/10.1039/b813817f Gundogdu K, Stone KW, Turner DB, Nelson KA (2007) Multidimensional coherent spectroscopy made easy. Chem Phys 341(1–3):89–94. https://doi.org/10.1016/j.chemphys.2007.06.027 Hornung T, Vaughan JC, Feurer T, Nelson KA (2004) Degenerate four-wave mixing spectroscopy based on two-dimensional femtosecond pulse shaping. Opt Lett 29(17):2052–2054. https://doi.org/10.1364/ol.29.002052 Vaughan JC, Hornung T, Stone KW, Nelson KA (2007) Coherently controlled ultrafast four-wave mixing spectroscopy. J Phys Chem A 111(23):4873–4883. https://doi.org/10.1021/jp0662911 Shim S-H, Strasfeld DB, Ling YL, Zanni MT (2007) Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide. Proc Natl Acad Sci USA 104(36):14197–14202. https://doi.org/10.1073/pnas.0700804104 Yabushita A, Lee YH, Kobayashi T (2010) Development of a multiplex fast-scan system for ultrafast time-resolved spectroscopy. Rev Sci Instrum. https://doi.org/10.1063/1.3455809 Helbing J, Hamm P (2011) Compact implementation of Fourier transform two-dimensional IR spectroscopy without phase ambiguity. J Opt Soc Am B Opt Phys 28(1):171–178. https://doi.org/10.1364/josab.28.000171 Draeger S, Roeding S, Brixner T (2017) Rapid-scan coherent 2D fluorescence spectroscopy. Opt Express 25(4):3259–3267. https://doi.org/10.1364/oe.25.003259 Helbing J, Hamm P (2011) Compact implementation of Fourier transform two-dimensional IR spectroscopy without phase ambiguity. J Opt Soc Am B 28(1):171–178. https://doi.org/10.1364/JOSAB.28.000171 Kauppinen J, Partanen J (2001) Fourier transforms in spectroscopy, 1st edn. Wiley-VCH, Berlin Jonas DM (2003) Two-dimensional femtosecond spectroscopy. Annu Rev Phys Chem 54:425–463. https://doi.org/10.1146/annurev.physchem.54.011002.103907 Candes EJ, Wakin MB (2008) An introduction to compressive sampling. IEEE Signal Process Mag 25(2):21–30. https://doi.org/10.1109/msp.2007.914731 Roeding S, Klimovich N, Brixner T (2017) Optimizing sparse sampling for 2D electronic spectroscopy. J Chem Phys. https://doi.org/10.1063/1.4976309 Dunbar JA, Osborne DG, Anna JM, Kubarych KJ (2013) Accelerated 2D-IR using compressed sensing. J Phys Chem Lett 4(15):2489–2492. https://doi.org/10.1021/jz401281r Almeida J, Prior J, Plenio MB (2012) Computation of two-dimensional spectra assisted by compressed sampling. J Phys Chem Lett 3(18):2692–2696. https://doi.org/10.1021/jz3009369 Tracy KM, Barich MV, Carver CL, Luther BM, Krummel AT (2016) High-throughput two-dimensional infrared (2D IR) spectroscopy achieved by interfacing microfluidic technology with a high repetition rate 2D IR spectrometer. J Phys Chem Lett 7(23):4865–4870. https://doi.org/10.1021/acs.jpclett.6b01941 Kanal F, Keiber S, Eck R, Brixner T (2014) 100-kHz shot-to-shot broadband data acquisition for high-repetition-rate pump-probe spectroscopy. Opt Express 22(14):16965–16975. https://doi.org/10.1364/oe.22.016965 Luther BM, Tracy KM, Gerrity M, Brown S, Krummel AT (2016) 2D IR spectroscopy at 100 kHz utilizing a Mid-IR OPCPA laser source. Opt Express 24(4):4117–4127. https://doi.org/10.1364/oe.24.004117 Bredenbeck J, Helbing J, Nienhaus K, Nienhaus GU, Hamm P (2007) Protein ligand migration mapped by nonequilibrium 2D-IR exchange spectroscopy. Proc Natl Acad Sci 104(36):14243–14248. https://doi.org/10.1073/pnas.0607758104 Ge NH, Hochstrasser RM (2002) Femtosecond two-dimensional infrared spectroscopy: IR-COSY and THIRSTY. PhysChemComm 5(3):17–26. https://doi.org/10.1039/B109935C Rector KD, Fayer MD (1998) Vibrational echoes: a new approach to condensed-matter vibrational spectroscopy. Int Rev Phys Chem 17(3):261–306. https://doi.org/10.1080/014423598230063 Hamm P, Lim M, DeGrado WF, Hochstrasser RM (1999) The two-dimensional IR nonlinear spectroscopy of a cyclic penta-peptide in relation to its three-dimensional structure. Proc Natl Acad Sci 96(5):2036–2041. https://doi.org/10.1073/pnas.96.5.2036 Khalil M, Demirdöven N, Tokmakoff A (2003) Coherent 2D IR spectroscopy: molecular structure and dynamics in solution. J Phys Chem A 107(27):5258–5279. https://doi.org/10.1021/jp0219247 Ostrander JS, Knepper R, Tappan AS, Kay JJ, Zanni MT, Farrow DA (2017) Energy transfer between coherently delocalized states in thin films of the explosive pentaerythritol tetranitrate (PETN) revealed by two-dimensional infrared spectroscopy. J Phys Chem B 121(6):1352–1361. https://doi.org/10.1021/acs.jpcb.6b09879 Kraack JP (2017) Ultrafast structural molecular dynamics investigated with 2D infrared spectroscopy methods. Top Curr Chem 375(6):86. https://doi.org/10.1007/s41061-017-0172-1 Ferretti M, Hendrikx R, Romero E, Southall J, Cogdell RJ, Novoderezhkin VI, Scholes GD, van Grondelle R (2016) Dark states in the light-harvesting complex 2 revealed by two-dimensional electronic spectroscopy. Sci Rep. https://doi.org/10.1038/srep20834 Ferretti M, Novoderezhkin VI, Romero E, Augulis R, Pandit A, Zigmantasc D, van Grondelle R (2014) The nature of coherences in the B820 bacteriochlorophyll dimer revealed by two-dimensional electronic spectroscopy. Phys Chem Chem Phys 16(21):9930–9939. https://doi.org/10.1039/c3cp54634a Wong CY, Alvey RM, Turner DB, Wilk KE, Bryant DA, Curmi PMG, Silbey RJ, Scholes GD (2012) Electronic coherence lineshapes reveal hidden excitonic correlations in photosynthetic light harvesting. Nat Chem 4(5):396–404. https://doi.org/10.1038/nchem.1302 Lim J, Palecek D, Caycedo-Soler F, Lincoln CN, Prior J, von Berlepsch H, Huelga SF, Plenio MB, Zigmantas D, Hauer J (2015) Vibronic origin of long-lived coherence in an artificial molecular light harvester. Nat Commun. https://doi.org/10.1038/ncomms8755 Scholes GD (2003) Long-range resonance energy transfer in molecular systems. Annu Rev Phys Chem 54(1):57–87. https://doi.org/10.1146/annurev.physchem.54.011002.103746 Mirkovic T, Ostroumov EE, Anna JM, van Grondelle R, Govindjee Scholes GD (2017) Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem Rev 117(2):249–293. https://doi.org/10.1021/acs.chemrev.6b00002 Kraack JP, Frei A, Alberto R, Hamm P (2017) Ultrafast vibrational energy transfer in catalytic monolayers at solid-liquid interfaces. J Phys Chem Lett 8(11):2489–2495. https://doi.org/10.1021/acs.jpclett.7b01034 Kraack JP, Sévery L, Tilley SD, Hamm P (2018) Plasmonic substrates do not promote vibrational energy transfer at solid–liquid interfaces. J Phys Chem Lett 9(1):49–56. https://doi.org/10.1021/acs.jpclett.7b02855 Cahoon JF, Sawyer KR, Schlegel JP, Harris CB (2008) Determining transition-state geometries in liquids using 2D-IR. Science 319(5871):1820–1823. https://doi.org/10.1126/science.1154041 Fayer MD (2009) Dynamics of liquids, molecules, and proteins measured with ultrafast 2D IR vibrational echo chemical exchange spectroscopy. Annu Rev Phys Chem 60(1):21–38. https://doi.org/10.1146/annurev-physchem-073108-112712 Ghosh A, Ostrander JS, Zanni MT (2017) Watching proteins wiggle: mapping structures with two-dimensional infrared spectroscopy. Chem Rev 117(16):10726–10759. https://doi.org/10.1021/acs.chemrev.6b00582 Christensson N, Kauffmann HF, Pullerits T, Mančal T (2012) Origin of long-lived coherences in light-harvesting complexes. J Phys Chem B 116(25):7449–7454. https://doi.org/10.1021/jp304649c Monahan DM, Whaley-Mayda L, Ishizaki A, Fleming GR (2015) Influence of weak vibrational-electronic couplings on 2D electronic spectra and inter-site coherence in weakly coupled photosynthetic complexes. J Chem Phys. https://doi.org/10.1063/1.4928068 Fujihashi Y, Fleming GR, Ishizaki A (2015) Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra. J Chem Phys. https://doi.org/10.1063/1.4914302 Duan HG, Nalbach P, Prokhorenko VI, Mukamel S, Thorwart M (2015) On the origin of oscillations in two-dimensional spectra of excitonically-coupled molecular systems. New J Phys. https://doi.org/10.1088/1367-2630/17/7/072002 Koeppe B, Tolstoy PM, Guo J, Nibbering ETJ, Elsaesser T (2011) Two-dimensional UV–Vis/NMR correlation spectroscopy: a heterospectral signal assignment of hydrogen-bonded complexes. J Phys Chem Lett 2(9):1106–1110. https://doi.org/10.1021/jz200285c Tamimi A, Heussman DJ, Kringle LM, von Hippel PH, Marcus AH (2018) Measuring structure and disorder of (Cy3)2 dimer labeled DNA fork-junctions using two-dimensional fluorescence spectroscopy (2DFS). Biophys J 114(3):171A–171A Goetz S, Li DH, Kolb V, Pflaum J, Brixner T (2018) Coherent two-dimensional fluorescence micro-spectroscopy. Opt Express 26(4):3915–3925. https://doi.org/10.1364/oe.26.003915 Pachon LA, Marcus AH, Aspuru-Guzik A (2015) Quantum process tomography by 2D fluorescence spectroscopy. J Chem Phys. https://doi.org/10.1063/1.4919954 Bakulin AA, Silva C, Vella E (2016) Ultrafast spectroscopy with photocurrent detection: watching excitonic optoelectronic systems at work. J Phys Chem Lett 7(2):250–258. https://doi.org/10.1021/acs.jpclett.5b01955 Karki KJ, Widom JR, Seibt J, Moody I, Lonergan MC, Pullerits T, Marcus AH (2014) Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell. Nat Commun 5:5869. https://doi.org/10.1038/ncomms6869 https://www.nature.com/articles/ncomms6869#supplementary-information Nardin G, Autry TM, Silverman KL, Cundiff ST (2013) Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure. Opt Express 21(23):28617–28627. https://doi.org/10.1364/OE.21.028617 Aeschlimann M, Brixner T, Fischer A, Kramer C, Melchior P, Pfeiffer W, Schneider C, Struber C, Tuchscherer P, Voronine DV (2011) Coherent two-dimensional nanoscopy. Science 333(6050):1723–1726. https://doi.org/10.1126/science.1209206 Liebel M, Toninelli C, van Hulst NF (2018) Room-temperature ultrafast nonlinear spectroscopy of a single molecule. Nat Photonics 12(1):45–49. https://doi.org/10.1038/s41566-017-0056-5 Mukamel S, Healion D, Zhang Y, Biggs JD (2013) Multidimensional attosecond resonant X-ray spectroscopy of molecules: lessons from the optical regime. Annu Rev Phys Chem 64(1):101–127. https://doi.org/10.1146/annurev-physchem-040412-110021 Biggs JD, Zhang Y, Healion D, Mukamel S (2013) Multidimensional X-ray spectroscopy of valence and core excitations in cysteine. J Chem Phys 138(14):144303. https://doi.org/10.1063/1.4799266 Kochise B, Yu Z, Markus K, Weijie H, Shaul M (2016) Multidimensional resonant nonlinear spectroscopy with coherent broadband X-ray pulses. Phys Scr T169:014002 Diels JC, Rudolph W (2006) Ultrashort laser pulse phenomena: fundamentals, techniques, and applications on a femtosecond time scale. Optics and photonics, 2nd edn. Elsevier/Academic Press, Amsterdam; Boston Schmuttenmaer CA (2004) Exploring dynamics in the far-infrared with terahertz spectroscopy. Chem Rev 104(4):1759–1779 Kampfrath T, Tanaka K, Nelson KA (2013) Resonant and nonresonant control over matter and light by intense terahertz transients. Nat Photonics 7(9):680–690 Cho MH (2008) Coherent two-dimensional optical spectroscopy. Chem Rev 108(4):1331–1418. https://doi.org/10.1021/cr078377b Cho MH (2002) Ultrafast vibrational spectroscopy in condensed phases. PhysChemComm 5:40–58. https://doi.org/10.1039/b110898k Dietze DR, Mathies RA (2016) Femtosecond stimulated Raman spectroscopy. ChemPhysChem 17(9):1224–1251 Kubarych KJ, Milne CJ, Miller RJD (2003) Fifth-order two-dimensional Raman spectroscopy: a new direct probe of the liquid state. Int Rev Phys Chem 22(3):497–532 Rodriguez Y, Frei F, Cannizzo A, Feurer T (2015) Pulse-shaping assisted multidimensional coherent electronic spectroscopy. J Chem Phys 142(21):212451 Voronine DV, Abramavicius D, Mukamel S (2011) Coherent control protocol for separating energy-transfer pathways in photosynthetic complexes by chiral multidimensional signals. J Phys Chem A 115(18):4624–4629 Fuller FD, Ogilvie JP (2015) Experimental implementations of two-dimensional Fourier transform electronic spectroscopy. Annu Rev Phys Chem 66(66):667–690 Bakulin AA, Morgan SE, Kehoe TB, Wilson MWB, Chin AW, Zigmantas D, Egorova D, Rao A (2016) Nat Chem 8:16–23. https://doi.org/10.1038/nchem.2371 Sarovar M, Ishizaki A, Fleming GR, Whaley KB (2010) Nat Phys 6:462–467. https://doi.org/10.1038/nphys1652 Yan C, Nishida J, Yuan R et al (2016) J Am Chem Soc 138(30):9694–9703. https://doi.org/10.1021/jacs.6b05589 Maj M, Lomont JP, Rich KL, Alperstein AM, Zanni MT (2018) Chem Sci 9:463. https://doi.org/10.1039/c7sc03789a Lu J, Zhang Y, Hwang HY, Ofori-Okai BK, Fleischer S, Nelson KA (2016) PNAS 113(42):11800–11805 Mehlenbacher RD, McDonough TJ, Grechko M et al (2015) Nat Commun. https://doi.org/10.1038/ncomms7732 Guo Z, Molesky BM, Cheshire TP, Moran AM (2015) J Chem Phys 143:124202 Roeding S, Klimovich N, Brixner T (2017) J Chem Phys 146:084201. https://doi.org/10.1063/1.4976309