Introduction of NADH-dependent nitrate assimilation in Synechococcus sp. PCC 7002 improves photosynthetic production of 2-methyl-1-butanol and isobutanol

Metabolic Engineering - Tập 69 - Trang 87-97 - 2022
Hugh M. Purdy1, Brian F. Pfleger2, Jennifer L. Reed2
1Department of Chemical and Biological Engineering, University of Wisconsin – Madison, 1415 Engineering Dr., Madison, WI, 53706, USA
2Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI, 53706, USA

Tài liệu tham khảo

Abed, 2009, Applications of cyanobacteria in biotechnology, J. Appl. Microbiol., 10.1111/j.1365-2672.2008.03918.x Angermayr, 2009, Energy biotechnology with cyanobacteria, Curr. Opin. Biotechnol., 10.1016/j.copbio.2009.05.011 Angermayr, 2015, Metabolic engineering of cyanobacteria for the synthesis of commodity products, Trends Biotechnol., 10.1016/j.tibtech.2015.03.009 Atsumi, 2008, Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels, Nature, 451, 86, 10.1038/nature06450 Atsumi, 2009, Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde, Nat. Biotechnol., 27, 1177, 10.1038/nbt.1586 Atsumi, 2008, Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli, Appl. Environ. Microbiol., 74, 7802, 10.1128/AEM.02046-08 Broddrick, 2016, Unique attributes of cyanobacterial metabolism revealed by improved genome-scale metabolic modeling and essential gene analysis, Proc. Natl. Acad. Sci. Unit. States Am., 113, E8344, 10.1073/pnas.1613446113 Burgard, 2003, Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization, Biotechnol. Bioeng., 84, 647, 10.1002/bit.10803 Clark, 2018, Light-optimized growth of cyanobacterial cultures: growth phases and productivity of biomass and secreted molecules in light-limited batch growth, Metab. Eng., 47, 230, 10.1016/j.ymben.2018.03.017 Comer, 2020, Enhancing photosynthetic production of glycogen-rich biomass for use as a fermentation feedstock, Front. Energy Res., 8, 93, 10.3389/fenrg.2020.00093 Cooley, 2001, Succinate dehydrogenase and other respiratory pathways in thylakoid membranes of Synechocystis sp. strain PCC 6803: capacity comparisons and physiological function, J. Bacteriol., 183, 4251, 10.1128/JB.183.14.4251-4258.2001 Cournac, 2004, Sustained photoevolution of molecular hydrogen in a mutant of Synechocystis sp. strain PCC 6803 deficient in the type I NADPH-dehydrogenase complex, J. Bacteriol., 186, 1737, 10.1128/JB.186.6.1737-1746.2003 Davies, 2014, Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp. PCC 7002, Front. Bioeng. Biotechnol., 2, 21, 10.3389/fbioe.2014.00021 Englund, 2014, Production of squalene in Synechocystis sp. PCC 6803, PLoS One, 9, 10.1371/journal.pone.0090270 Erdrich, 2014, Cyanobacterial biofuels: new insights and strain design strategies revealed by computational modeling, Microb. Cell Factories, 10.1186/s12934-014-0128-x Flores, 2005, Photosynthetic nitrate assimilation in cyanobacteria, Photosynth. Res., 10.1007/s11120-004-5830-9 Gutthann, 2007, Inhibition of respiration and nitrate assimilation enhances photohydrogen evolution under low oxygen concentrations in Synechocystis sp. PCC 6803, Biochim. Biophys. Acta, 1767, 161, 10.1016/j.bbabio.2006.12.003 Heidorn, 2011, Synthetic biology in cyanobacteria, Methods Enzymol., 497, 539, 10.1016/B978-0-12-385075-1.00024-X Jacobsen, 2014, Engineering of photosynthetic mannitol biosynthesis from CO2 in a cyanobacterium, Metab. Eng., 21, 60, 10.1016/j.ymben.2013.11.004 Jones, 2014, Genetic instability in cyanobacteria - an elephant in the room?, Front. Bioeng. Biotechnol., 2, 12, 10.3389/fbioe.2014.00012 Knoop, 2013, Flux balance analysis of cyanobacterial metabolism: the metabolic network of Synechocystis sp. PCC 6803, PLoS Comput. Biol., 9, 10.1371/journal.pcbi.1003081 Kusakabe, 2013, Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light, Metab. Eng., 20, 101, 10.1016/j.ymben.2013.09.007 Lan, 2011, Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide, Metab. Eng., 13, 353, 10.1016/j.ymben.2011.04.004 Long, 2015, Computational methods in metabolic engineering for strain design, Curr. Opin. Biotechnol., 34, 135, 10.1016/j.copbio.2014.12.019 Ludwig, 2011, Transcription profiling of the model cyanobacterium Synechococcus sp. strain PCC 7002 by next-Gen (SOLiDTM) sequencing of cDNA, Front. Microbiol., 2, 41, 10.3389/fmicb.2011.00041 Luque-Almagro, 2011, Bacterial nitrate assimilation: gene distribution and regulation, 1838 Markley, 2014 McNeely, 2011, Synechococcus sp. strain PCC 7002 nifJ mutant lacking pyruvate:Ferredoxin oxidoreductase, Appl. Environ. Microbiol., 77, 2435, 10.1128/AEM.02792-10 Miao, 2017, Isobutanol production in Synechocystis PCC 6803 using heterologous and endogenous alcohol dehydrogenases, Metab. Eng. Commun., 5, 45, 10.1016/j.meteno.2017.07.003 Miao, 2018, Protein engineering of α-ketoisovalerate decarboxylase for improved isobutanol production in Synechocystis PCC 6803, Metab. Eng., 47, 42, 10.1016/j.ymben.2018.02.014 Moreno-Vivián, 1999, Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases, J. Bacteriol., 10.1128/JB.181.21.6573-6584.1999 Muro-Pastor, 2003, Regulation of ammonium assimilation in cyanobacteria, Plant Physiol. Biochem., 10.1016/S0981-9428(03)00066-4 Nakano, 1998, Nitrogen and oxygen regulation of Bacillus subtilis nasDEF encoding NADH-dependent nitrite reductase by TnrA and ResDE, J. Bacteriol., 180, 5344, 10.1128/JB.180.20.5344-5350.1998 Nogales, 2012, Detailing the optimality of photosynthesis in cyanobacteria through systems biology analysis, Proc. Natl. Acad. Sci. U.S.A., 109, 2678, 10.1073/pnas.1117907109 Nogales, 2013, Toward systems metabolic engineering in cyanobacteria: opportunities and bottlenecks, Bioengineered, 4, 10.4161/bioe.22792 O'Brien, 2015, Using genome-scale models to predict biological capabilities, Cell, 161, 971, 10.1016/j.cell.2015.05.019 Ohashi, 2011, Regulation of nitrate assimilation in cyanobacteria, J. Exp. Bot., 10.1093/jxb/erq427 Okuhara, 1999, Cloning and inactivation of genes encoding ferredoxin- and NADH-dependent glutamate synthases in the cyanobacterium Plectonema boryanum. Imbalances in nitrogen and carbon assimilations caused by deficiency of the ferredoxin-dependent enzyme, Plant Physiol., 120, 33, 10.1104/pp.120.1.33 Oliver, 2014, Metabolic design for cyanobacterial chemical synthesis, Photosynth. Res., 120, 249, 10.1007/s11120-014-9997-4 Peltier, 2016, NDH-1 and NDH-2 plastoquinone reductases in oxygenic photosynthesis, Annu. Rev. Plant Biol., 67, 55, 10.1146/annurev-arplant-043014-114752 Ruffing, 2011, Engineered cyanobacteria: teaching an old bug new tricks, Bioeng. Bugs, 2, 136, 10.4161/bbug.2.3.15285 Ruffing, 2014, Biofuel toxicity and mechanisms of biofuel tolerance in three model cyanobacteria, Algal Res, 5, 121, 10.1016/j.algal.2014.07.006 Rugbjerg, 2020, The future of self-selecting and stable fermentations, J. Ind. Microbiol. Biotechnol., 4711 47, 993, 10.1007/s10295-020-02325-0 Sakamoto, 2008, Transcription factor NtcB specifically controls the nitrate assimilation genes in the marine cyanobacterium Synechococcus sp. strain PCC 7002, Phycol. Res., 56, 223, 10.1111/j.1440-1835.2008.00504.x Savakis, 2015, Photosynthetic production of glycerol by a recombinant cyanobacterium, J. Biotechnol., 195, 46, 10.1016/j.jbiotec.2014.12.015 Shen, 2012, Photosynthetic production of 2-methyl-1-butanol from CO2 in cyanobacterium Synechococcus elongatus PCC7942 and characterization of the native acetohydroxyacid synthase, Energy Environ. Sci., 5, 9574, 10.1039/c2ee23148d Stephens, 2021, Engineering photosynthetic bioprocesses for sustainable chemical production: a review, Front. Bioeng. Biotechnol., 10.3389/fbioe.2020.610723 Tamoi, 2005, The Calvin cycle in cyanobacteria is regulated by CP12 via the NAD(H)/NADP(H) ratio under light/dark conditions, Plant J., 42, 504, 10.1111/j.1365-313X.2005.02391.x Testa, 2019, In silico strategies to couple production of bioethanol with growth in cyanobacteria, Biotechnol. Bioeng., 116, 2061, 10.1002/bit.26998 Thomas, 2006, A second isoform of the ferredoxin:NADP oxidoreductase generated by an in-frame initiation of translation, Proc. Natl. Acad. Sci. U.S.A., 103, 18368, 10.1073/pnas.0607718103 Varman, 2013, Metabolic engineering of Synechocystis sp. strain PCC 6803 for isobutanol production, Appl. Environ. Microbiol., 79, 908, 10.1128/AEM.02827-12 Vu, 2013, Computational evaluation of Synechococcus sp. PCC 7002 metabolism for chemical production, Biotechnol. J., 8, 619, 10.1002/biot.201200315 Włodarczyk, 2020, Newly discovered Synechococcus sp. PCC 11901 is a robust cyanobacterial strain for high biomass production, Commun. Biol., 3, 1, 10.1038/s42003-020-0910-8