Intrinsically High Thermoelectric Performance in AgInSe2 n‐Type Diamond‐Like Compounds

Advanced Science - Tập 5 Số 3 - 2018
Pengfei Qiu1, Yuting Qin1, Qihao Zhang1,2, Ruoxi Li3, Jiong Yang3, Qingfeng Song1,2, Yunshan Tang1, Shengqiang Bai1, Xun Shi1, Lidong Chen1
1State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
2University of Chinese Academy of Sciences, Beijing, 100049, China
3Materials Genome Institute, Shanghai University, Shanghai 200444, China

Tóm tắt

AbstractDiamond‐like compounds are a promising class of thermoelectric materials, very suitable for real applications. However, almost all high‐performance diamond‐like thermoelectric materials are p‐type semiconductors. The lack of high‐performance n‐type diamond‐like thermoelectric materials greatly restricts the fabrication of diamond‐like material‐based modules and their real applications. In this work, it is revealed that n‐type AgInSe2 diamond‐like compound has intrinsically high thermoelectric performance with a figure of merit (zT) of 1.1 at 900 K, comparable to the best p‐type diamond‐like thermoelectric materials reported before. Such high zT is mainly due to the ultralow lattice thermal conductivity, which is fundamentally limited by the low‐frequency Ag‐Se “cluster vibrations,” as confirmed by ab initio lattice dynamic calculations. Doping Cd at Ag sites significantly improves the thermoelectric performance in the low and medium temperature ranges. By using such high‐performance n‐type AgInSe2‐based compounds, the diamond‐like thermoelectric module has been fabricated for the first time. An output power of 0.06 W under a temperature difference of 520 K between the two ends of the module is obtained. This work opens a new window for the applications using the diamond‐like thermoelectric materials.

Từ khóa


Tài liệu tham khảo

10.1038/nmat2090

10.1080/09506608.2016.1183075

10.1007/s11664-009-0680-z

10.1021/nl8026795

10.1002/adfm.201400474

10.1038/nature11439

10.1021/ja111199y

10.1016/j.ensm.2016.01.009

10.1063/1.3103604

10.1021/cm101589c

10.1063/1.3617458

10.1063/1.3605246

10.1002/adma.201200732

10.1039/C2TA00157H

10.1039/c3ta15211a

10.1039/C5TA09584K

10.1039/C5TC03325J

10.1021/ja301452j

10.1039/c2cc30318c

10.1002/aenm.201600007

10.1002/aelm.201600312

10.1021/ja207159j

10.1002/adma.201400058

10.1039/C3MH00091E

10.1039/C5TC02948A

Ying P. Z., 2012, Mater. Energy Convers. Storage, 519, 188

10.1039/C4RA03054K

10.1016/j.jallcom.2012.09.067

10.1063/1.4902849

10.1002/aenm.201601299

10.1103/PhysRevB.7.4485

10.1063/1.3309953

10.1021/acsnano.5b04636

10.1103/PhysRevB.46.6131

10.1103/PhysRevB.84.075203

10.1016/j.mseb.2012.04.025

10.1038/npjcompumats.2015.15

10.1002/pssa.2211220122

10.1063/1.363405

10.1016/j.jmat.2016.05.006

10.1002/adfm.201604145

10.1063/1.2737422

10.1039/C6EE00322B

10.1364/AO.44.002673

10.1002/aenm.201301581

10.1039/C4EE02428A

10.1103/PhysRevB.50.17953

10.1103/PhysRevB.59.1758

10.1103/PhysRevB.78.134106