Intrinsic chirality of multipartite graphs
Tóm tắt
We classify which complete multipartite graphs are intrinsically chiral.
Tài liệu tham khảo
E. Flapan, Symmetries of Möbius ladders. Math. Ann. 283, 271–283 (1989)
E. Flapan, Rigid and flexible symmetries of embedded graphs. New J. Chem. 17, 645–653 (1993)
E. Flapan, Intrinsic chirality. J. Mol. Struct. (Theochem) 336, 157–164 (1995)
E. Flapan, Rigidity of graph symmetries in the 3-sphere. J. Knot Theory Ramif. 4, 373–388 (1995)
E. Flapan, Intrinsic chirality of triple-layered naphthalenophane and related graphs. J. Math. Chem. 24, 379–388 (1998)
E. Flapan, A knot theoretic approach to molecular chirality, in Molecular Catenanes, Rotaxanes, and Knots, ed. by J.P. Sauvage, C. Dietrich-Buchecker (Wiley-VCH, Weinheim, 1999), pp. 7–35
E. Flapan, B. Mellor, R. Naimi, Complete graphs whose topological symmetry groups are polyhedral. Algebraic Geom. Topol. 11, 1405–1433 (2011)
E. Flapan, N. Weaver, Intrinsic chirality of complete graphs. Proc. Am. Math. Soc. 115, 233–236 (1992)
C. Liang, K. Mislow, Classification of topologically chiral molecules. J. Math. Chem. 15, 245–260 (1994)
G. Rapenne, J. Crassous, L.E. Echegoyen, L. Echegoyen, E. Flapan, F. Diederich, Regioselective One-Step Synthesis and Topological Chirality of trans-3, trans-3, trans-3, and e, e, e [60]Fullerene-Cyclotriveratrylene tris-adducts: Discussion on a topological meso-form. Helv. Chim. Acta 83, 1209–1223 (2000)
P.A. Smith, Transformations of finite period II. Ann. Math. 40, 690–711 (1939)