Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements
Tóm tắt
Từ khóa
Tài liệu tham khảo
X. Pennec, “L’incertitude dans les problèmes de reconnaissance et de recalage—Applications en imagerie médicale et biologie moléculaire,” Thèse de sciences (PhD thesis), Ecole Polytechnique, Palaiseau (France), December 1996.
X. Pennec and N. Ayache, “Uniform distribution, distance and expectation problems for geometric features processing,” Journal of Mathematical Imaging and Vision, Vol. 9, No. 1, pp. 49–67, 1998.
X. Pennec, N. Ayache, and J.-P. Thirion, “Landmark-based registration using features identified through differential geometry,” in Handbook of Medical Imaging, I. Bankman (Eds.), Academic Press: Chapt. 31, pp. 499–513, 2000.
X. Pennec, C.R.G. Guttmann, and J.-P. Thirion, “Feature-based registration of medical images: Estimation and validation of the pose accuracy,” in Proc. of First Int. Conf. on Medical Image Computing and Computer-Assisted Intervention (MICCAI’98), Vol. 1496 of LNCS, October 1998. Springer Verlag: Cambridge, USA, pp. 1107–1114.
S. Granger, X. Pennec, and A. Roche, “Rigid point-surface registration using an EM variant of ICP for computer guided oral implantology,” in 4th Int. Conf. on Medical Image Computing and Computer-Assisted Intervention (MICCAI’01), W.J. Niessen and M.A. Viergever, (Eds.), Utrecht, The Netherlands, 2001, Vol. 2208 of LNCS, pp. 752–761.
S. Granger and X. Pennec, Statistiques exactes et approchées sur les normales aléatoires. Research report RR-4533, INRIA, 2002.
P.T. Fletcher, S. Joshi, C. Lu, and S Pizer, “Gaussian distributions on Lie groups and their application to statistical shape analysis,” in Poc of Information Processing in Medical Imaging (IPMI’2003), 2003, pp. 450–462.
P.T. Fletcher and S.C. Joshi, “Principal geodesic analysis on symmetric spaces: Statistics of diffusion tensors,” in Proc. of CVAMIA and MMBIA Workshops, Prague, Czech Republic, May 15, 2004, LNCS 3117, Springer, 2004, pp. 87–98.
Ch. Lenglet, M. Rousson, R. Deriche and O. Faugeras,“Statistics on the manifold of multivariate normal distributions: Theory and application to diffusion tensor MRI processing”, to appear in International Journal of Mathematical Imaging and Vision, 2006. Also available as INRIA Research Report 5242, 2004.
P. Batchelor, M. Moakher, D. Atkinson, F. Calamante, and A. Connelly, “A rigorous framework for diffusion tensor calculus,” Mag. Res. in Med., Vol. 53, pp. 221–225, 2005.
X. Pennec, P. Fillard, and N. Ayache, “A Riemannian Framework for Tensor Computing”, International Journal of Computer Vision, 66(1):41-66, January 2006. Note: A preliminary version appeared as INRIA Research Report 5255, July 2004.
P. Fillard, V. Arsigny, X. Pennec, P. Thompson, and N. Ayache, “Extrapolation of sparse tensor fields: Application to the modeling of brain variability,” in Proc. of Information Processing in Medical Imaging 2005 (IPMI’05), Gary Christensen and Milan Sonka, (Eds.), Springer: Glenwood springs, Colorado, USA, July 2005, Vol. 3565 of LNCS, pp. 27–38.
X. Pennec and J.-P. Thirion, “A framework for uncertainty and validation of 3D registration methods based on points and frames,” Int. Journal of Computer Vision, Vol. 25, No. 3, pp. 203–229, 1997.
S. Amari, Differential-geometric methods in Statistics, Vol. 28 of Lecture Notes in Statistics, Springer: 2nd corr. print edition, 1990.
J.M. Oller and J.M. Corcuera, “Intrinsic analysis of statistical estimation,” Annals of Statistics, Vol. 23, No. 5, pp. 1562–1581, 1995.
C. Bingham, “An antipodally symmetric distribution on the sphere,” The Annals of Statistics, Vol. 2, No. 6, pp. 1201–1225, 1974.
P.E. Jupp and K.V. Mardia, “A unified view of the theory of directional statistics, 1975–1988,” Int. Statistical Review, Vol. 57, No. 3, pp. 261–294, 1989.
J.T. Kent, The art of Statistical Science, chapter 10: New Directions in Shape Analysis, K.V. Mardia, (Ed.), John Wiley & Sons, 1992. pp. 115–127.
K.V. Mardia, “Directional statistics and shape analysis,” Journal of applied Statistics, Vol. 26, pp. 949–957, 1999.
D.G. Kendall, “A survey of the statistical theory of shape (with discussion),” Statist. Sci., Vol. 4, pp. 87–120, 1989.
I.L. Dryden and K.V. Mardia, “Theoretical and distributional aspects of shape analysis,” in Probability Measures on Groups, X (Oberwolfach, 1990), Plenum: New York, 1991, pp. 95–116.
H. Le and D.G. Kendall, “The Riemannian structure of Euclidean shape space: A novel environment for statistics,” Ann. Statist., Vol. 21, pp. 1225–1271, 1993.
U. Grenander, Probabilities on Algebraic Structures, Whiley, 1963.
H. Karcher, “Riemannian center of mass and mollifier smoothing,” Comm. Pure Appl. Math., Vol. 30: pp. 509–541, 1977.
W.S. Kendall, “Convexity and the hemisphere,” Journ. London Math. Soc., Vol. 43, No. 2, pp. 567–576, 1991.
M. Emery and G. Mokobodzki, “Sur le barycentre d’une probabilité dans une variété,” in Séminaire de probabilités XXV, Vol. 1485 of Lect. Notes in Math., M. Yor J. Azema, P.A. Meyer, (Eds.), Springer-Verlag, 1991, pp. 220–233.
M. Arnaudon, “Barycentres convexes et approximations des martingales continues dans les variétés,” In M. Yor J. Azema, P.A. Meyer, editor, Séminaire de probabilités XXIX, Vol. 1613 of Lect. Notes in Math., pp. 70–85. Springer-Verlag, 1995.
J. Picard, “Barycentres et martingales sur une variété,” Annales de l’institut Poincaré—Probabilités et Statistiques, Vol. 30, No. 4, pp. 647-702, 1994.
R.W.R. Darling, “Martingales on non-compact manifolds: Maximal inequalities and prescribed limits,” Ann. Inst. H. Poincarré Proba. Statistics., Vol. 32, No. 4, pp. 431–454, 1996.
U. Grenander, M.I. Miller, and A. Srivastava, “Hilbert-schmidt lower bounds for estimators on matrix Lie groups for ATR,” IEEE Trans. on PAMI, Vol. 20, No. 8, pp. 790–802, 1998.
X. Pennec, “Computing the mean of geometric features - application to the mean rotation,” Research Report RR-3371, INRIA, March 1998.
M. Moakher, “Means and averaging in the group of rotations,” SIAM J. of Matrix Anal. Appl., Vol. 24, No. 1, pp. 1–16, 2002.
A. Edelman, T. Arias, and S.T. Smith, “The geometry of algorithms with orthogonality constraints,” SIAM Journal of Matrix Analysis and Applications, Vol. 20, No. 2, pp. 303–353, 1998.
H. Hendricks, “A Cramer-Rao type lower bound for estimators with values in a manifold,” Journal of Multivariate Analysis, Vol. 38, pp. 245–261, 1991.
R. Bhattacharya and V. Patrangenaru, “Nonparametric estimation of location and dispersion on Riemannian manifolds,” Journal of Statistical Planning and Inference, Vol. 108, pp. 23–36, 2002.
R. Bhattacharya and V. Patrangenaru, “Large sample theory of intrinsic and extrinsic sample means on manifolds I,” Annals of Statistics, Vol. 31, No. 1, pp. 1–29, 2003.
M. Spivak, Differential Geometry, Publish or Perish, Inc., 2nd edition, 1979, Vol. 1.
W. Klingenberg, Riemannian Geometry, Walter de Gruyter: Berlin, New York, 1982.
S. Gallot, D. Hulin, and J. Lafontaine, Riemannian Geometry, Springer Verlag, 2nd edn., 1993.
H. Poincaré, Calcul des probabilités, 2nd edn., Paris, 1912.
M.G. Kendall and P.A.P. Moran, Geometrical probability, Number 10 in Griffin’s statistical monographs and courses. Charles Griffin & Co. Ltd., 1963.
X. Pennec, “Probabilities and Statistics on Riemannian Manifolds: A Geometric approach,” Research Report 5093, INRIA, January 2004.
M. Fréchet, L’intégrale abstraite d’une fonction abstraite d’une variable abstraite et son application à la moyenne d’un élément aléatoire de nature quelconque. Revue Scientifique, pp. 483–512, 1944.
M. Fréchet, “Les éléments aléatoires de nature quelconque dans un espace distancié,” Ann. Inst. H. Poincaré, Vol. 10, pp. 215–310, 1948.
W.S. Kendall, “Probability, convexity, and harmonic maps with small image I: uniqueness and fine existence,” Proc. London Math. Soc., Vol. 61, No. 2, pp. 371–406, 1990.
S. Doss, “Sur la moyenne d’un élément aléatoire dans un espace distancié,” Bull. Sc. Math. Vol. 73, pp. 48–72, 1949.
W. Herer, “Espérance mathématique au sens de Doss d’une variable aléatoire à valeur dans un espace métrique,” C. R. Acad. Sc. Paris, Séris, I, Vol. 302, No. 3, pp. 131–134, 1986.
W. Herer, “Espérance mathématique d’une variable aléatoire à valeur dans un espace métrique à courbure négative,” C. R. Acad. Sc. Paris, Série I, Vol. 306, pp. 681–684, 1988.
M. Arnaudon, “Espérances conditionnelles et C-martingales dans les variétés,” in Séminaire de probabilités XXVIII, M. Yor J. Azema, P.A. Meyer, (Eds.), Vol. 1583 of Lect. Notes in Math., Springer-Verlag, 1994, pp. 300–311.
H. Maillot, “Différentielle de la variance et centrage de la plaque de coupure sur une variété riemannienne compacte,” Communication personnelle, 1997.
W.S. Kendall, “The propeller: a counterexample to a conjectured criterion for the existence of certain harmonic functions,” Journal of the London Mathematical Society, Vol. 46, pp. 364–374, 1992.
E. Hairer, Ch. Lubich, and G. Wanner. “Geometric numerical integration: Structure preserving algorithm for ordinary differential equations,” Vol. 31 of Springer Series in Computational Mathematics, Springer, 2002.
J.-P. Dedieu, G. Malajovich, and P. Priouret, “Newton method on Riemannian manifolds: Covariant alpha-theory,” IMA Journal of Numerical Analysis, Vol. 23, pp. 395–419, 2003.
P.J. Rousseeuw and A.M. Leroy, Robust Regression and Outliers Detection, Wiley series in prob. and math. stat. J. Wiley and Sons, 1987.
A. Grigor’yan, “Heat kernels on weighted manifolds and applications,” in The Ubiquitous Heat Kernel, J. Jorgenson and L. Walling (Eds.), Vol 398 of Contemporary Mathematics, AMS, 2006, pp. 91–190. http://www.math.uni-bielefeld.de/~grigor/pubs.htm
K.V. Mardia and P.E. Jupp, Directional Statistics, Whiley: Chichester, 2000.
A.M. Kagan, Y.V. Linnik, and C.R. Rao, Characterization Problems in Mathematical Statistics, Whiley-Interscience: New-York, 1973.
I. Chavel, Riemannian Geometry—A Modern Introduction, Vol. 108 of Cambridge tracts in mathematics, Cambridge University press, 1993.
W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipices in C., Cambridge Univ. Press, 1991.
X. Pennec, “Toward a generic framework for recognition based on uncertain geometric features,” Videre: Journal of Computer Vision Research, Vol. 1, No. 2, pp. 58–87, 1998.
A. Roche, X. Pennec, G. Malandain, and N. Ayache, “Rigid registration of 3D ultrasound with MR images: a new approach combining intensity and gradient information,” IEEE Transactions on Medical Imaging, Vol. 20, No. 10, pp. 1038–1049, 2001.
S. Nicolau, X. Pennec, L. Soler, and N. Ayache, “Evaluation of a new 3D/2D registration criterion for liver radio-frequencies guided by augmented reality,” in International Symposium on Surgery Simulation and Soft Tissue Modeling (IS4TM’03), N. Ayache and H. Delingette, (Eds.), Vol. 2673 of Lecture Notes in Computer Science, Juan-les-Pins, France, INRIA Sophia Antipolis, Springer-Verlag, 2003, pp. 270–283.
V. Rasouli, Application of Riemannian multivariate statistics to the analysis of rock fracture surface roughness, PhD thesis: University of London, 2002.
X. Pennec, “Probabilities and statistics on Riemannian manifolds: Basic tools for geometric measurements,” in Proc. of Nonlinear Signal and Image Processing (NSIP’99), A.E. Cetin, L. Akarun, A. Ertuzun, M.N. Gurcan, and Y. Yardimci, (Eds.), June 20-23, Antalya, Turkey, IEEE-EURASIP, 1999, Vol. 1, pp. 194–198,