Intrathecal melanin-concentrating hormone reduces sympathetic tone and blocks cardiovascular reflexes

Eyitemi J. Egwuenu1, Angelina Y. Fong1, Paul M. Pilowsky1
1Medicine, Macquarie University, Sydney, Australia

Tóm tắt

Melanin-concentrating hormone (MCH) is a neuropeptide that acts to increase feeding behavior and decrease energy expenditure. The role of MCH in central cardiorespiratory regulation is still poorly understood. Experiments were conducted on urethane-anesthetized, vagotomized, and artificially ventilated male Sprague-Dawley rats ( n = 22) to ascertain whether MCH modulates sympathetic vasomotor tone, as well as barosympathetic, chemosympathetic, and somatosympathetic reflexes at the level of the spinal cord. Intrathecal injection of 10 μl of MCH produced a dose-dependent hypotension, bradycardia, and sympathoinhibition. Peak response was observed following administration of 1 mM MCH, causing a decrease in mean arterial pressure of 39 ± 2 mmHg ( P < 0.001), splanchnic sympathetic nerve activity of 78 ± 11% ( P < 0.001), and heart rate of 87 ± 11 beats per minute (bpm) ( P < 0.01). The two peaks of the somatosympathetic reflex were decreased by intrathecal MCH, 7 ± 3% ( P < 0.01) and 31 ± 6% ( P < 0.01), respectively, and the spinal component of the reflex was accentuated 96 ± 23% ( P < 0.05), with respect to the baseline for MCH, compared with the two peaks and spinal component of the somatosympathetic reflex elicited following saline injection with respect to the baseline for saline. MCH decreased the sympathetic gain to 120 s of hyperoxic hypercapnea (10% CO2 in 90% O2) and to 10–12 s poikilocapneic anoxia (100% N2) from 0.74 ± 0.14%/s to 0.23 ± 0.04%/s ( P < 0.05) and 16.47 ± 3.2% to 4.35 ± 1.56% ( P < 0.05), respectively. There was a 34% decrease in gain and a 62% decrease in range of the sympathetic baroreflex with intrathecal MCH. These data demonstrate that spinal MCH blunts the central regulation of sympathetic tone and adaptive sympathetic reflexes.

Từ khóa


Tài liệu tham khảo

10.1002/cne.903150307

10.1111/j.1476-5381.2011.01751.x

10.1152/ajpregu.00134.2004

10.1016/S0014-5793(99)01092-3

10.1016/S1566-0702(00)00215-0

10.1016/S0006-8993(98)00598-8

10.1002/cne.903190204

10.1038/nm0902-1039b

10.1016/j.neuroscience.2007.10.002

10.1016/j.neuroscience.2005.10.057

10.1016/j.neuroscience.2010.01.065

10.1038/22313

10.1152/ajpregu.00753.2007

10.1016/j.resp.2010.05.004

10.1016/j.brainres.2009.09.088

10.1111/j.1469-7793.2001.0237b.x

10.1074/jbc.M102068200

10.1046/j.1365-2826.2003.00997.x

10.1002/cne.21511

10.1016/S0014-5793(96)01160-X

10.1016/S0167-4889(97)00135-3

10.1038/12978

10.1172/JCI10660

10.1016/j.neuroscience.2011.11.073

10.1152/ajpregu.00537.2004

10.1016/j.regpep.2006.08.013

10.1016/S0306-4522(01)00439-0

10.1016/S0306-4522(02)00705-4

10.1152/ajpregu.2001.280.5.R1261

10.1152/ajpregu.1997.272.3.R800

10.1016/0306-4522(86)90023-0

10.1002/cne.901960211

10.1016/j.autneu.2004.08.010

10.1210/en.2003-0243

10.1097/00004872-200209000-00002

10.1098/rstb.2009.0092

10.1210/er.2006-0021

10.1210/endo.138.1.4887

10.1073/pnas.121170598

10.1038/22321

10.1152/physrev.1973.53.4.916

10.1111/j.1476-5381.2010.01102.x

10.1038/25341

10.1006/bbrc.1999.1104

10.1016/0361-9230(85)90213-8

10.1002/cne.22723

10.1152/ajpregu.1989.256.2.R448

10.1016/0006-8993(88)90132-1

10.1006/geno.2002.6771

10.1523/JNEUROSCI.2951-08.2008

10.1152/ajpregu.00297.2011

10.1111/j.1476-5381.2011.01760.x