Intraneuronal β-Amyloid Aggregates, Neurodegeneration, and Neuron Loss in Transgenic Mice with Five Familial Alzheimer's Disease Mutations: Potential Factors in Amyloid Plaque Formation
Tóm tắt
Mutations in the genes for amyloid precursor protein (APP) and presenilins (PS1, PS2) increase production of β-amyloid 42 (Aβ42) and cause familial Alzheimer's disease (FAD). Transgenic mice that express FAD mutant APP and PS1 overproduce Aβ42and exhibit amyloid plaque pathology similar to that found in AD, but most transgenic models develop plaques slowly. To accelerate plaque development and investigate the effects of very high cerebral Aβ42levels, we generated APP/PS1 double transgenic mice that coexpress five FAD mutations (5XFAD mice) and additively increase Aβ42production. 5XFAD mice generate Aβ42almost exclusively and rapidly accumulate massive cerebral Aβ42levels. Amyloid deposition (and gliosis) begins at 2 months and reaches a very large burden, especially in subiculum and deep cortical layers. Intraneuronal Aβ42accumulates in 5XFAD brain starting at 1.5 months of age (before plaques form), is aggregated (as determined by thioflavin S staining), and occurs within neuron soma and neurites. Some amyloid deposits originate within morphologically abnormal neuron soma that contain intraneuronal Aβ. Synaptic markers synaptophysin, syntaxin, and postsynaptic density-95 decrease with age in 5XFAD brain, and large pyramidal neurons in cortical layer 5 and subiculum are lost. In addition, levels of the activation subunit of cyclin-dependent kinase 5, p25, are elevated significantly at 9 months in 5XFAD brain, although an upward trend is observed by 3 months of age, before significant neurodegeneration or neuron loss. Finally, 5XFAD mice have impaired memory in the Y-maze. Thus, 5XFAD mice rapidly recapitulate major features of AD amyloid pathology and may be useful models of intraneuronal Aβ42-induced neurodegeneration and amyloid plaque formation.
Từ khóa
Tài liệu tham khảo
Biernat, 1992, The switch of tau protein to an Alzheimer-like state includes the phosphorylation of two serine-proline motifs upstream of the microtubule binding region, EMBO J, 11, 1593, 10.1002/j.1460-2075.1992.tb05204.x
Citron, 1997, Mutant presenilins of Alzheimer's disease increase production of 42-residue amyloid β-protein in both transfected cells and transgenic mice, Nat Med, 3, 67, 10.1038/nm0197-67
Gyure, 2001, Intraneuronal abeta-amyloid precedes development of amyloid plaques in Down syndrome, Arch Pathol Lab Med, 125, 489, 10.5858/2001-125-0489-IAAPDO
Hogan B Beddington R Costantini F Lacy E (1994) Manipulating the mouse embryo: a laboratory manual (Cold Spring Harbor Laboratory, Plainview, NY), second Edition.
Joachim, 1991, Antibodies to non-beta regions of the beta-amyloid precursor protein detect a subset of senile plaques, Am J Pathol, 138, 373
Lazarov, 2002, Evidence that synaptically released beta-amyloid accumulates as extracellular deposits in the hippocampus of transgenic mice, J Neurosci, 22, 9785, 10.1523/JNEUROSCI.22-22-09785.2002
Moechars, 1996, Expression in brain of amyloid precursor protein mutated in the alpha-secretase site causes disturbed behavior, neuronal degeneration and premature death in transgenic mice, EMBO J, 15, 1265, 10.1002/j.1460-2075.1996.tb00468.x
Mori, 2002, Intraneuronal Abeta42 accumulation in Down syndrome brain, Amyloid, 9, 88, 10.3109/13506120208995241
Selkoe, 2001, Alzheimer's disease: genes, proteins, and therapy, Physiol Rev, 81, 741, 10.1152/physrev.2001.81.2.741
Sheng, 2002, Disruption of corticocortical connections ameliorates amyloid burden in terminal fields in a transgenic model of Aβ amyloidosis, J Neurosci, 22, 9794, 10.1523/JNEUROSCI.22-22-09794.2002