Intranasal delivery of cell-penetrating anti-NF-κB peptides (Tat-NBD) alleviates infection-sensitized hypoxic–ischemic brain injury
Tài liệu tham khảo
Adhami, 2008, Deleterious effects of plasminogen activators in neonatal cerebral hypoxia–ischemia, Am. J. Pathol., 172, 1704, 10.2353/ajpath.2008.070979
Akpan, 2011, Intranasal delivery of caspase-9 inhibitor reduces caspase-6-dependent axon/neuron loss and improves neurological function after stroke, J. Neurosci., 31, 8894, 10.1523/JNEUROSCI.0698-11.2011
Alcalá-Barraza, 2010, Intranasal delivery of neurotrophic factors BDNF, CNTF, EPO, and NT-4 to the CNS, J. Drug Target., 18, 179, 10.3109/10611860903318134
Bednarek, 2012, Increased MMP-9 and TIMP-1 in mouse neonatal brain and plasma and in human neonatal plasma after hypoxia–ischemia: a potential marker of neonatal encephalopathy, Pediatr. Res., 71, 63, 10.1038/pr.2011.3
Cady, 2008, Phosphorus magnetic resonance spectroscopy 2h after perinatal cerebral hypoxia–ischemia prognosticates outcome in the newborn piglet, J. Neurochem., 107, 1027
Chen, 2010, Sterile inflammation: sensing and reacting to damage, Nat. Rev. Immunol., 10, 826, 10.1038/nri2873
Choi, 2011, Translocator protein (18kDa)/peripheral benzodiazepine receptor specific ligands induce microglia functions consistent with an activated state, Glia, 59, 219, 10.1002/glia.21091
Dammann, 2002, Perinatal infection, fetal inflammatory response, white matter damage, and cognitive limitations in children born preterm, Ment. Retard. Dev. Disabil. Res. Rev., 8, 46, 10.1002/mrdd.10005
Dhuria, 2010, Intranasal delivery to the central nervous system: mechanisms and experimental considerations, J. Pharm. Sci., 99, 1654, 10.1002/jps.21924
Dirnagl, 1999, Pathobiology of ischaemic stroke: an integrated view, Trends Neurosci., 22, 391, 10.1016/S0166-2236(99)01401-0
Eklind, 2005, Lipopolysaccharide induces both a primary and a secondary phase of sensitization in the developing rat brain, Pediatr. Res., 58, 112, 10.1203/01.PDR.0000163513.03619.8D
Fan, 2005, Minocycline attenuates lipopolysaccharide-induced white matter injury in the neonatal rat brain, Neuroscience, 133, 159, 10.1016/j.neuroscience.2005.02.016
Khwaja, 2008, Pathogenesis of cerebral white matter injury of prematurity, Arch. Dis. Child. Fetal Neonatal Ed., 93, F153, 10.1136/adc.2006.108837
Kilkenny, 2010, Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research, PLoS Biol., 8, e1000412, 10.1371/journal.pbio.1000412
Lawn, 2005, 4million neonatal deaths: when? Where? Why?, Lancet, 365, 891, 10.1016/S0140-6736(05)71048-5
Lehnardt, 2003, Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway, Proc. Natl. Acad. Sci. U. S. A., 100, 8514, 10.1073/pnas.1432609100
Leviton, 2010, Microbiologic and histologic characteristics of the extremely preterm infant's placenta predict white matter damage and later cerebral palsy, Pediatr. Res., 67, 95, 10.1203/PDR.0b013e3181bf5fab
Li, 2005, Olfactory ensheathing cells and olfactory nerve fibroblasts maintain continuous open channels for regrowth of olfactory nerve fibers, Glia, 52, 245, 10.1002/glia.20241
Martin, 2010, Evaluation of the PBR/TSPO radioligand [(18)F]DPA-714 in a rat model of focal cerebral ischemia, J. Cereb. Blood Flow Metab., 30, 230, 10.1038/jcbfm.2009.205
May, 2000, Selective inhibition of NF-κB activation by a peptide that blocks the interaction of NEMO with the Iκ-B kinase complex, Science, 289, 1550, 10.1126/science.289.5484.1550
Nijboer, 2008, Strong neuroprotection by inhibition of NF-kappaB after neonatal hypoxia–ischemia involves apoptotic mechanisms but is independent of cytokines, Stroke, 39, 2129, 10.1161/STROKEAHA.107.504175
Nijboer, 2008, A dual role of the NF-κB pathway in neonatal hypoxic–ischemic brain damage, Stroke, 39, 2578, 10.1161/STROKEAHA.108.516401
Pizzi, 2009, Post-ischemic brain damage: NF-κB dimer heterogeneity as a molecular determinant of neuron vulnerability, FEBS J., 276, 27, 10.1111/j.1742-4658.2008.06767.x
Stoll, 2004, Neurodevelopmental and growth impairment among extremely low-birth-weight infants with neonatal infection, JAMA, 292, 2357, 10.1001/jama.292.19.2357
Sun, 2012, Mannitol-facilitated perfusion staining with 2,3,5-triphenyltetrazolium chloride (TTC) for detection of experimental cerebral infarction and biochemical analysis, J. Neurosci. Methods, 203, 122, 10.1016/j.jneumeth.2011.09.029
Svedin, 2007, Delayed peripheral administration of a GPE analogue induces astrogliosis and angiogenesis and reduces inflammation and brain injury following hypoxia-ischemia in the neonatal rat, Dev. Neurosci., 29, 393, 10.1159/000105480
van den Tweel, 2006, Selective inhibition of nuclear factor-κB activation after hypoxia/ischemia in neonatal rats is not neuroprotective, Pediatr. Res., 59, 232, 10.1203/01.pdr.0000196807.10122.5f
van der Kooij, 2010, NF-kappaB inhibition after neonatal cerebral hypoxia–ischemia improves long-term motor and cognitive outcome in rats, Neurobiol. Dis., 38, 266, 10.1016/j.nbd.2010.01.016
Vanhamme, 1997, Improved method for accurate and efficient quantification of MRS data with use of prior-knowledge, J. Magn. Reson., 129, 35, 10.1006/jmre.1997.1244
Volpe, 2008
Wang, 2009, Lipopolysaccharide sensitizes neonatal hypoxic–ischemic brain injury in a MyD88-dependent manner, J. Immunol., 183, 7471, 10.4049/jimmunol.0900762
Wintermark, 2010, Placental pathology in asphyxiated newborns meeting the criteria for therapeutic hypothermia, Am. J. Obstet. Gynecol., 203, e571
Yang, 2009, Therapeutic administration of plasminogen activator inhibitor-1 prevents hypoxic-ischemic brain injury in newborns, J. Neurosci., 29, 8669, 10.1523/JNEUROSCI.1117-09.2009
Yang, D., Sun, Y., Nemkul, N., Baumann, J., Shereen, A., Dunn, R.S., Wills-Karp, M., Lawrence, D., Lindquist, D., Kuan, C., in press. Plasminogen activator inhibitor-1 mitigates brain injury in a rat of infection-sensitized neonatal hypoxia-ischemia. Cereb. Cortex (Epub ahead of print PMID 22556277).