Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting

Journal of Nuclear Materials - Tập 470 - Trang 170-178 - 2016
Yuan Zhong1, Leifeng Liu1, Stefan Wikman2, Daqing Cui1, Zhijian Shen1
1Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
2Fusion for Energy, Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kalinin, 2000, Assessment and selection of materials for ITER in-vessel components, J. Nucl. Mater., 283, 10, 10.1016/S0022-3115(00)00305-6

Tavassoli, 1995, Assessment of austenitic stainless steels, Fusion Eng. Des., 29, 371, 10.1016/0920-3796(95)80044-X

Rodchenkov, 2000, Effect of ITER blanket manufacturing process on the properties of the 316L (N)-IG steel, Fusion Eng. Des., 49, 657, 10.1016/S0920-3796(00)00359-8

Hegeman, 2011, Tensile properties of explosively formed 316L (N)-IG stainless steel with and without an electron beam weld, J. Nucl. Mater., 417, 870, 10.1016/j.jnucmat.2010.12.153

Sato, 1996, Mechanical properties of HIP bonded joints of austenitic stainless steel and Cu-alloy for fusion experimental reactor blanket, J. Nucl. Mater., 233, 940, 10.1016/S0022-3115(96)00259-0

Chen, 2012, Banded structure and its distribution in friction stir processing of 316L austenitic stainless steel, J. Nucl. Mater., 420, 497

Gibson, 2010

Kruth, 2004, Selective laser melting of iron-based powder, J. Mater. Process. Technol., 149, 616, 10.1016/j.jmatprotec.2003.11.051

Zhou, 2015, Textures formed in a CoCrMo alloy by selective laser melting, J. Alloys Compd., 631, 153, 10.1016/j.jallcom.2015.01.096

Thivillon, 2009, Potential of direct metal deposition technology for manufacturing thick functionally graded coatings and parts for reactors components, J. Nucl. Mater., 385, 236, 10.1016/j.jnucmat.2008.11.023

Luo, 2012, Potential application of laser solid forming technology for fabrication of breeding blanket, Fusion Eng. Des., 87, 128, 10.1016/j.fusengdes.2011.11.006

Hunt, 2015, Selective laser sintering of MA956 oxide dispersion strengthened steel, J. Nucl. Mater., 464, 80, 10.1016/j.jnucmat.2015.04.011

Zhou, 2015, Balling phenomena in selective laser melted tungsten, J. Mater. Process. Technol., 222, 33, 10.1016/j.jmatprotec.2015.02.032

Zhou, 2015, 3D-imaging of selective laser melting defects in a Co–Cr–Mo alloy by synchrotron radiation micro-CT, Acta Mater., 98, 1, 10.1016/j.actamat.2015.07.014

Saeidi, 2015, Transformation of austenite to duplex austenite-ferrite assembly in annealed stainless steel 316L consolidated by laser melting, J. Alloys Compd., 633, 463, 10.1016/j.jallcom.2015.01.249

Saeidi, 2015, Hardened austenite steel with columnar sub-grain structure formed by laser melting, Mater. Sci. Eng. A, 625, 221, 10.1016/j.msea.2014.12.018

Mertens, 2014, Microstructures and mechanical properties of stainless steel AISI 316L processed by selective laser melting, Mater. Sci. Forum, 783, 898, 10.4028/www.scientific.net/MSF.783-786.898

Chen, 2005, Tensile properties of a nanocrystalline 316L austenitic stainless steel, Scr. Mater., 52, 1039, 10.1016/j.scriptamat.2005.01.023

Busby, 2005, The relationship between hardness and yield stress in irradiated austenitic and ferritic steels, J. Nucl. Mater., 336, 267, 10.1016/j.jnucmat.2004.09.024

Design and Construction Rules for Mechanical Components of the FBR Nuclear Installations, RCC-MR, Edition 2007, Section 1, Subsection Z: Technical Appendix A3, Properties Group 1S.

Xu, 2011, Fabrication and characterization of ODS austenitic steels, J. Nucl. Mater., 417, 283, 10.1016/j.jnucmat.2010.12.155

Lee, 2006, Strain rate dependence of impact properties of sintered 316L stainless steel, J. Nucl. Mater., 359, 247, 10.1016/j.jnucmat.2006.09.003

Furuya, 2009, Mechanical properties of F82H/316L and 316L/316L welds upon the target back-plate of IFMIF, J. Nucl. Mater., 386, 963, 10.1016/j.jnucmat.2008.12.259

Saeidi, 2015, Austenitic stainless steel strengthened by the in situ formation of oxide nanoinclusions, RSC Adv., 5, 20747, 10.1039/C4RA16721J

Lindau, 2002, Mechanical and microstructural properties of a hipped RAFM ODS-steel, J. Nucl. Mater., 307, 769, 10.1016/S0022-3115(02)01045-0

Sato, 1998, Optimization of HIP bonding conditions for ITER shielding blanket/first wall made from austenitic stainless steel and dispersion strengthened copper alloy, J. Nucl. Mater., 258, 265, 10.1016/S0022-3115(98)00360-2