Intracellular pH-responsive iron-catechin nanoparticles with osteogenic/anti-adipogenic and immunomodulatory effects for efficient bone repair
Tóm tắt
Từ khóa
Tài liệu tham khảo
Seong, J. M.; Kim, B. C.; Park, J. H.; Kwon, I. K.; Mantalaris, A.; Hwang, Y. S. Stem cells in bone tissue engineering. Biomed. Mater. 2010, 5, 062001.
Fraser, J. K.; Zhu, M.; Wulur, I.; Alfonso, Z. Adipose-derived stem cells. In Mesenchymal Stem Cells. Prockop, D. J.; Bunnell, B. A.; Phinney, D. G., Eds.; Humana Press: Totowa, 2008; pp 59–67.
Bunnell, B. A.; Flaat, M.; Gagliardi, C.; Patel, B.; Ripoll, C. Adipose-derived stem cells: Isolation, expansion and differentiation. Methods 2008, 45, 115–120.
Yang, X.; Li, Y. Y.; Liu, X. J.; Zhang, R. R.; Feng, Q. L. In vitro uptake of hydroxyapatite nanoparticles and their effect on osteogenic differentiation of human mesenchymal stem cells. Stem Cells Int. 2018, 2018, 2036176.
Xu, C.; Xiao, L.; Cao, Y. X.; He, Y.; Lei, C.; Xiao, Y.; Sun, W. J.; Ahadian, S.; Zhou, X. T. Khademhosseini, A. et al. Mesoporous silica rods with cone shaped pores modulate inflammation and deliver BMP-2 for bone regeneration. Nano Res. 2020, 13, 2323–2331.
Li, J. C.; Chen, Y.; Kawazoe, N.; Chen, G. P. Ligand density-dependent influence of arginine-glycine-aspartate functionalized gold nanoparticles on osteogenic and adipogenic differentiation of mesenchymal stem cells. Nano Res. 2018, 11, 1247–1261.
Qin, H.; Zhu, C.; An, Z. Q.; Jiang, Y.; Zhao, Y. C.; Wang, J. X.; Liu, X.; Hui, B.; Zhang, X. L.; Wang, Y. Silver nanoparticles promote osteogenic differentiation of human urine-derived stem cells at noncytotoxic concentrations. Int. J. Nanomedicine 2014, 9, 2469–2478.
Lv, L. W.; Liu, Y. S.; Zhang, P.; Zhang, X.; Liu, J. Z.; Chen, T.; Su, P. L.; Li, H. Y.; Zhou, Y. S. The nanoscale geometry of TiO2 nanotubes influences the osteogenic differentiation of human adipose-derived stem cells by modulating H3K4 trimethylation. Biomaterials 2015, 39, 193–205.
Wang, Q. W.; Chen, B.; Ma, F.; Lin, S. K.; Cao, M.; Li, Y.; Gu, N. Magnetic iron oxide nanoparticles accelerate osteogenic differentiation of mesenchymal stem cells via modulation of long noncoding RNA INZEB2. Nano Res. 2017, 10, 626–642.
Kang, H.; Zhang, K. Y.; Pan, Q.; Lin, S. E.; Wong, D. S. H.; Li, J. M.; Lee, W. Y. W.; Yang, B. G.; Han, F. X.; Li, G. et al. Remote control of intracellular calcium using Upconversion Nanotransducers regulates stem cell differentiation in vivo. Adv. Funct. Mater. 2018, 28, 1802642.
Franz, S.; Rammelt, S.; Scharnweber, D.; Simon, J. C. Immune responses to implants — A review of the implications for the design of immunomodulatory biomaterials. Biomaterials 2011, 32, 6692–6709.
Jin, S. S.; He, D. Q.; Luo, D.; Wang, Y.; Yu, M.; Guan, B.; Fu, Y.; Li, Z. X.; Zhang, T.; Zhou, Y. H. et al. A biomimetic hierarchical nanointerface orchestrates macrophage polarization and mesenchymal stem cell recruitment to promote endogenous bone regeneration. ACS Nano 2019, 13, 6581–6595.
Zhao, D. W.; Liu, C.; Zuo, K. Q.; Su, P.; Li, L. B.; Xiao, G. Y.; Cheng, L. Strontium-zinc phosphate chemical conversion coating improves the osseointegration of titanium implants by regulating macrophage polarization. Chem. Eng. J. 2021, 408, 127362.
Mahon, O. R.; Browe, D. C.; Gonzalez-Fernandez, T.; Pitacco, P.; Whelan, I. T.; Von Euw, S.; Hobbs, C.; Nicolosi, V.; Cunningham, K. T.; Mills, K. H. G. et al. Nano-particle mediated M2 macrophage polarization enhances bone formation and MSC osteogenesis in an IL-10 dependent manner. Biomaterials 2020, 239, 119833.
Chen, Z. T.; Klein, T.; Murray, R. Z.; Crawford, R.; Chang, J.; Wu, C. T.; Xiao, Y. Osteoimmunomodulation for the development of advanced bone biomaterials. Mater. Today 2016, 19, 304–321.
Pajarinen, J.; Lin, T.; Gibon, E.; Kohno, Y.; Maruyama, M.; Nathan, K.; Lu, L.; Yao, Z. Y.; Goodman, S. B. Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials 2019, 196, 80–89.
Mantovani, A.; Biswas, S. K.; Galdiero, M. R.; Sica, A.; Locati, M. Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol. 2013, 229, 176–185.
Martinez, F. O.; Sica, A.; Mantovani, A.; Locati, M. Macrophage activation and polarization. Front. Biosci. 2008, 13, 453–461.
Wei, Y. J.; Tsai, K. S.; Lin, L. C.; Lee, Y. T.; Chi, C. W.; Chang, M. C.; Tsai, T. H.; Hung, S. C. Catechin stimulates osteogenesis by enhancing PP2A activity in human mesenchymal stem cells. Osteoporos. Int. 2011, 22, 1469–1479.
Chen, C. H.; Ho, M. L.; Chang, J. K.; Hung, S. H.; Wang, G. J. Green tea catechin enhances osteogenesis in a bone marrow mesenchymal stem cell line. Osteoporos. Int. 2005, 16, 2039–2045.
Jiang, Y.; Ding, S. J.; Li, F.; Zhang, C.; Sun-Waterhouse, D.; Chen, Y. L.; Li, D. P. Effects of (+)-catechin on the differentiation and lipid metabolism of 3T3-L1 adipocytes. J. Funct. Foods 2019, 62, 103558.
Furuyashiki, T.; Nagayasu, H.; Aoki, Y.; Bessho, H.; Hashimoto, T.; Kanazawa, K.; Ashida, H. Tea catechin suppresses adipocyte differentiation accompanied by down-regulation of PPARγ2 and C/EBPα in 3T3-L1 cells. Biosci. Biotechnol. Biochem. 2004, 68, 2353–2359.
Huang, J.; Wang, Y.; Xie, Z.; Zhou, Y.; Zhang, Y.; Wan, X. The anti-obesity effects of green tea in human intervention and basic molecular studies. Eur. J. Clin. Nutr. 2014, 68, 1075–1087.
He, J. T.; Xu, L.; Yang, L.; Wang, X. F. Epigallocatechin gallate is the most effective catechin against antioxidant stress via hydrogen peroxide and radical scavenging activity. Med. Sci. Monit. 2018, 24, 8198–8206.
Zanwar, A. A.; Badole, S. L.; Shende, P. S.; Hegde, M. V.; Bodhankar, S. L. Chapter 21 — Antioxidant role of Catechin in health and disease. In Polyphenols in Human Health and Disease. Watson, R. R.; Preedy, V. R.; Zibadi, S., Eds.; Academic Press: San Diego, 2014; pp 267–271.
Ma, B. J.; Wang, S.; Liu, F.; Zhang, S.; Duan, J. Z.; Li, Z.; Kong, Y.; Sang, Y. H.; Liu, H.; Bu, W. B. et al. Self-assembled copper-amino acid nanoparticles for in situ glutathione “AND” H2O2 sequentially triggered Chemodynamic therapy. J. Am. Chem. Soc. 2019, 141, 849–857.
Xu, C. N.; Wang, Y. B.; Yu, H. Y.; Tian, H. Y.; Chen, X. S. Multifunctional Theranostic nanoparticles derived from fruit-extracted Anthocyanins with dynamic disassembly and elimination abilities. ACS Nano 2018, 12, 8255–8265.
Ejima, H.; Richardson, J. J.; Liang, K.; Best, J. P.; van Koeverden, M. P.; Such, G. K.; Cui, J. W.; Caruso, F. One-step assembly of coordination complexes for versatile film and particle engineering. Science 2013, 341, 154–157.
Zhou, J. J.; Lin, Z. X.; Ju, Y.; Rahim, M.; Richardson, J. J.; Caruso, F. Polyphenol-mediated assembly for particle engineering. Acc. Chem. Res. 2020, 53, 1269–1278.
Agoro, R.; Taleb, M.; Quesniaux, V. F. J.; Mura, C. Cell iron status influences macrophage polarization. PLoS One 2018, 13, e0196921.
Wang, Y. Q.; Zhang, J.; Zhang, C. Y.; Li, B. J.; Wang, J. J.; Zhang, X. J.; Li, D.; Sun, S. K. Functional-protein-assisted fabrication of Fe-gallic acid coordination polymer nanonetworks for localized photothermal therapy. ACS Sustainable Chem. Eng. 2018, 7, 994–1005.
Liu, F. Y.; He, X. X.; Chen, H. D.; Zhang, J. P.; Zhang, H. M.; Wang, Z. X. Gram-scale synthesis of coordination polymer nanodots with renal clearance properties for cancer theranostic applications. Nat. Commun. 2015, 6, 8003.
Li, L. C.; Tian Y. Zeta potential. In Encyclopedia of Pharmaceutical Technology. Swarbrick, J.; Boylan J. C., Eds.; Marcel Dekker Inc.: New York, 1997; pp 429–458.
Kong, Y.; Ma, B. J.; Liu, F.; Chen, D.; Zhang, S.; Duan, J. Z.; Huang, Y.; Sang, Y. H.; Wang, J. J.; Li, D. et al. Cellular stemness maintenance of human adipose-derived stem cells on ZnO nanorod arrays. Small 2019, 15, 1904099.
Zhang, S. L.; Li, J.; Lykotrafitis, G.; Bao, G.; Suresh S. Size-dependent endocytosis of nanoparticles. Adv. Mater. 2009, 21, 419–424.
Zou, W.; Rohatgi, N.; Brestoff, J. R.; Li, Y. J.; Barve, R. A.; Tycksen, E.; Kim, Y.; Silva, M. J.; Teitelbaum, S. L. Ablation of fat cells in adult mice induces massive bone gain. Cell Metab. 2020, 32, 801–813.e6.
Zhang, K. Y.; Jia, Z. F.; Yang, B. G.; Feng, Q.; Xu, X.; Yuan, W. H.; Li, X. F.; Chen, X. Y.; Duan, L.; Wang, D. P. et al. Adaptable hydrogels mediate cofactor-assisted activation of biomarker-responsive drug delivery via positive feedback for enhanced tissue regeneration. Adv. Sci. 2018, 5, 1800875.
Feng, Q.; Xu, J. K.; Zhang, K. Y.; Yao, H.; Zheng, N. Y.; Zheng, L. Z.; Wang, J. L.; Wei, K. C.; Xiao, X. F.; Qin, L. et al. Dynamic and cell-infiltratable hydrogels as injectable carrier of therapeutic cells and drugs for treating challenging bone defects. ACS Cent. Sci. 2019, 5, 440–450.
Wood, M. J.; Leckenby, A.; Reynolds, G.; Spiering, R.; Pratt, A. G.; Rankin, K. S.; Isaacs, J. D.; Haniffa, M. A.; Milling, S.; Hilkens, C. M. U. Macrophage proliferation distinguishes 2 subgroups of knee osteoarthritis patients. JCI Insight 2019, 4, e125325.
Fan, F. Y.; Sang, L. X.; Jiang M. Catechins and their therapeutic benefits to inflammatory bowel disease. Molecules 2017, 22, 484.