Intra-abdominal Pressures during Voluntary and Reflex Cough
Tóm tắt
Involuntary coughing such as that evoked from the larynx, the laryngeal cough reflex (LCR), triggers a coordinated contraction of the thoracic, abdominal and pelvic muscles, which increases intra-abdominal pressure (IAP), displaces the diaphragm upwards and generates the expiratory force for cough and airway clearance. Changes in the IAP during voluntary cough (VC) and the LCR can be measured via a pressure catheter in the bladder. This study evaluated the physiological characteristics of IAP generated during VC and the LCR including peak and mean pressures and calculations of the area under the curve (AUC) values during the time of the cough event or epoch. Eleven female subjects between the ages of 18 and 75 underwent standard urodynamic assessment with placement of an intravesicular catheter with a fiberoptic strain gauge pressure transducer. The bladder was filled with 200 ml of sterile water and IAP recordings were obtained with VC and the induced reflex cough test (RCT) using nebulized inhaled 20% tartaric acid to induce the LCR. IAP values were used to calculate the area under the curve (AUC) by the numerical integration of intravesicular pressure over time (cm H2O·s). The mean (± SEM) AUC values for VC and the LCR were 349.6 ± 55.2 and 986.6 ± 116.8 cm H2O·s (p < 0.01). The mean IAP values were 45.6 ± 4.65 and 44.5 ± 9.31 cm H2O (NS = .052), and the peak IAP values were 139.5 ± 14.2 and 164.9 ± 15.8 cm H2O (p = 0.07) for VC and LCR, respectively. The induced LCR is the involuntary rapid and repeated synchronous expiratory muscle activation that causes and sustains an elevated IAP over time, sufficient for airway protection. VC and LCR have different neurophysiological functions. Quantification of the LCR using AUC values and mean or peak IAP values may be useful as a clinical tool for determining neurophysiological airway protection status and provide a quantitative assessment of changes in a patient's functional recovery or decline.
Tài liệu tham khảo
Stephens RE, Addington WR, Miller SP, Anderson JW: Videofluoroscopy of the diaphragm during voluntary and reflex cough in humans. Am J Phys Med Rehabil. 2003, 82: 384-10.1097/00002060-200305000-00013.
Stephens RE, Addington WR, Widdicombe JG: Effect of acute unilateral middle cerebral artery infarcts on voluntary cough and the laryngeal cough reflex. Am J Phys Med Rehabil. 2003, 82: 379-383. 10.1097/00002060-200305000-00012.
Addington WR, Stephens RE, Widdicombe JG, Ockey RR, Anderson JW, Miller SP: Electrophysiologic latency to the external obliques of the laryngeal cough expiration reflex in humans. Am J Phys Med Rehabil. 2003, 82: 370-373. 10.1097/00002060-200305000-00010.
Lasserson D, Mills K, Arunachalam R, Polkey M, Moxham J, Kalra L: Differences in motor activation of voluntary and reflex cough in humans. Thorax. 2006, 61: 699-705. 10.1136/thx.2005.057901.
Addington WR, Stephens RE, Goulding RE: Anesthesia of the superior laryngeal nerves and tartaric acid-induced cough. Arch Phys Med Rehabil. 1999, 80: 1584-1586. 10.1016/S0003-9993(99)90334-9.
Widdicombe J, Fontana G: Cough: what's in a name?. Eur Respir J. 2006, 28: 10-15. 10.1183/09031936.06.00096905.
Korpáš J, Tomori Z: Cough and other respiratory reflexes. Progress in respiration research. Edited by: Herzog H. 1979, Basel; New York: S. Karger, 12: 16-118.
Tatar M, Hanacek J, Widdicombe J: The expiration reflex from the trachea and bronchi. Eur Respir J. 2008, 31: 385-390. 10.1183/09031936.00063507.
Addington WR, Stephens RE, Gilliland KA: Assessing the laryngeal cough reflex and the risk of developing pneumonia after stroke: An interhospital comparison. Stroke. 1999, 30: 1203-1207.
Addington WR, Stephens RE, Gilliland KA, Rodriguez M: Assessing the laryngeal cough reflex and the risk of developing pneumonia after stroke. Arch Phys Med Rehabil. 1999, 80: 150-154. 10.1016/S0003-9993(99)90112-0.
Addington WR, Stephens RE, Widdicombe JG, Anderson JW, Rekab K: Effect of tartaric acid-induced cough on pulmonary function in normal and asthmatic humans. Am J Phys Med Rehabil. 2003, 82: 374-378. 10.1097/00002060-200305000-00011.
Addington WR, Stephens RE, Widdicombe JG, Rekab K: Effect of stroke location on the laryngeal cough reflex and pneumonia risk. Cough. 2005, 1: 4-10.1186/1745-9974-1-4.
Fujimura M, Kamio Y, Myou S, Hashimoto T: Effect of oral mexiletine on the cough response to capsaicin and tartaric acid. Thorax. 2000, 55: 126-128. 10.1136/thorax.55.2.126.
Fujimura M, Sakamoto S, Kamio Y, Matsuda T: Sex difference in the inhaled tartaric acid cough threshold in non-atopic healthy subjects. Thorax. 1990, 45: 633-634.
Fujimura M, Sakamoto S, Kamio Y, Matsuda T: Effects of methacholine induced bronchoconstriction and procaterol induced bronchodilation on cough receptor sensitivity to inhaled capsaicin and tartaric acid. Thorax. 1992, 47: 441-445.
Fujimura M, Sakamoto S, Kamio Y, Matsuda T: Cough receptor sensitivity and bronchial responsiveness in normal and asthmatic subjects. Eur Respir J. 1992, 5: 291-295.
Fujimura M, Sakamoto S, Kamio Y, Saito M, Miyake Y, Yasui M, Matsuda T: Cough threshold to inhaled tartaric acid and bronchial responsiveness to methacholine in patients with asthma and sino-bronchial syndrome. Intern Med. 1992, 31: 17-21. 10.2169/internalmedicine.31.17.
Sakamoto S, Fujimura M, Kamio Y, Saito M, Yasui M, Miyake Y, Matsuda T: [Relationship between cough threshold to inhaled tartaric acid and sex, smoking and atopy in humans]. Nihon Kyobu Shikkan Gakkai Zasshi. 1990, 28: 1478-1481.
Cobb WS, Burns JM, Kercher KW, Matthews BD, James Norton H, Todd Heniford B: Normal intraabdominal pressure in healthy adults. J Surg Res. 2005, 129: 231-235. 10.1016/j.jss.2005.06.015.
Mathews JH, Fink KD: Numerical Methods: Using Matlab. 2004, Upper Saddle River, NJ: Prentice-Hall Publisher, Fourth
Addington WR, Stephens RE, Gilliland KA, Miller SP: Tartaric acid-induced cough and the superior laryngeal nerve evoked potential. Am J Phys Med Rehabil. 1998, 77: 523-526. 10.1097/00002060-199811000-00014.
Kastelik JA, Carr MJ: Poster discussion: summary. Pulm Pharmacol Ther. 2007, 20: 446-451. 10.1016/j.pupt.2006.10.008.
Leith DE: Cough. Lung Biology in Health and Disease: Respiratory Defense Mechanisms, Part II. Edited by: Brain JD, Proctor DF, Reid LM. 1977, New York: Marcel Dekker, 545-593.
Nishino T, Sugimori K, Hiraga K, Hond Y: Influence of CPAP on reflex responses to tracheal irritation in anesthetized humans. J Appl Physiol. 1989, 67: 954-958.
Hanacek J, Tatar M, Widdicombe J: Regulation of cough by secondary sensory inputs. Respir Physiol Neurobiol. 2006