Interval Type-2 Mutual Subsethood Cauchy Fuzzy Neural Inference System (IT2MSCFuNIS)
Tóm tắt
Từ khóa
Tài liệu tham khảo
Kayacan, E., Kayacan, E., Khanesar, M.A.: Identification of nonlinear dynamic systems using Type-2 fuzzy neural networks: a novel learning algorithm and a comparative study. IEEE Trans. Ind. Electron. 62(3), 1716–1724 (2015)
Abiyev, R.H., Kaynak, O., Alshanableh, T., Mamedov, F.: A type-2 neuro-fuzzy system based on clustering and gradient techniques applied to system identification and channel equalization. Appl. Soft Comput. 11(1), 1396–1406 (2011)
Sumati, V., Patvardhan, C.: Interval type-2 mutual subsethood fuzzy neural inference system (IT2MSFuNIS). IEEE Trans. Fuzzy Syst. 26(1), 203–215 (2018)
Yeh, C.Y., Jeng, W.H.R., Lee, S.J.: Data-based system modeling using a type-2 fuzzy neural network with a hybrid learning algorithm. IEEE Trans. Neural Netw. 22(12), 2296–2309 (2011)
Lin, Y.-Y., Chang, J.-Y., Lin, C.-T.: A TSK type-based self-evolving compensatory interval type-2 fuzzy neural network (TSCITFNN) and its applications. IEEE Trans. Ind. Electron. 61(1), 447–459 (2014)
Wu, D., Mendel, J.M.: Similarity measures for closed general type-2 fuzzy sets: overview, comparisons, and a geometric approach. IEEE Trans. Fuzzy Syst. 27(3), 515–526 (2019)
Liu, F., Mendel, J.M.: Encoding words into interval type-2 fuzzy sets using an interval approach. IEEE Trans. Fuzzy Syst. 16(6), 1503–1521 (2008)
Castro, J.R., Castillo, O., Melin, P., Mendoza, O., Rodríguez-Díaz, A.: An interval type-2 fuzzy neural network for chaotic time series prediction with cross-validation and akaike test. Stud. Comput. Intell. 318, 269–285 (2010)
Du, Z., Yan, Z., Zhao, Z.: Interval type-2 fuzzy tracking control for nonlinear systems via sampled-data controller. Fuzzy Sets Syst. 356, 92–112 (2019)
Chen, S.-M., Barman, D.: Adaptive weighted fuzzy interpolative reasoning based on representative values and similarity measures of interval type-2 fuzzy sets. Inf. Sci. 478, 167–185 (2019)
Huang, R., Li, Y., Wang, J.: Long-term traffic volume prediction based on K-means Gaussian interval type-2 fuzzy sets. IEEE/CAA J. Autom. Sin. 6(6), 1344–1351 (2019)
Li, X.-Y., Xiong, Y., Duan, C.-Y., Liu, H.-C.: Failure mode and effect analysis using interval type-2 fuzzy sets and fuzzy Petri nets. J. Intell. Fuzzy Syst. 37(1), 693–709 (2019)
Iordache, M., Schitea, D., Deveci, M., Akyurt, İZ., Iordache, I.: An integrated ARAS and interval type-2 hesitant fuzzy sets method for underground site selection: seasonal hydrogen storage in salt caverns. J. Petrol. Sci. Eng. 175, 1088–1098 (2019)
Nagarajan, D., Lathamaheswari, M., Broumi, S., Kavikumar, J.: A new perspective on traffic control management using triangular interval type-2 fuzzy sets and interval neutrosophic sets. Oper. Res. Perspect. 6, 1–13 (2019)
Wang, H., Yao, J., Zhang, X., Zhang, Y.: An area similarity measure for trapezoidal interval type-2 fuzzy sets and its application to service quality evaluation. Int. J. Fuzzy Syst. 23, 2252–2269 (2021)
Deveci, M., Cali, U., Kucuksari, S., Erdogan, N.: Interval type-2 fuzzy sets based multi-criteria decision-making model for offshore wind farm development in Ireland. Energy 198, 1–15 (2020)
Wang, H., Pan, X., Yan, J., Yao, J., He, S.: A projection-based regret theory method for multi-attribute decision making under interval type-2 fuzzy sets environment. Inf. Sci. 512, 108–122 (2020)
Lathamaheswari, M., Nagarajan, D., Kavikumar, J., Broumi, S.: Triangular interval type-2 fuzzy soft set and its application. Complex Intell. Syst. 6(3), 531–544 (2020)
Abiyev, R.H., Kaynak, O.: Type-2 fuzzy neural structure for identification and control of time-varying plants. IEEE Trans. Ind. Electron. 57(12), 4147–4159 (2010)
De Campos, S.P.V.: Fuzzy neural networks and neuro-fuzzy networks: a review of the main technique and applications used in literature. Appl. Soft Comput. J. 92(106275), 1–26 (2020)
Lin, C.-T., Pal, N.R., Wu, S.-L., Liu, Y.-T., Lin, Y.-Y.: An interval type-2 neural fuzzy system for online systems identification and feature elimination. IEEE Trans. Neural Netw. Learn. Syst. 26(7), 1442–1455 (2015)
Lin, Y.-Y., Liao, S.-H., Chang, J.-Y., Lin, C.-T.: Simplified interval type-2 fuzzy neural networks. IEEE Trans. Neural Netw. Learn. Syst. 25(5), 959–969 (2014)
Han, H.-G., Liu, H.-X., Liu, Z., Qiao, J.-F.: Fault detection of sludge bulking using a self-organizing type-2 fuzzy neural network. Control. Eng. Pract. 90, 27–37 (2019)
Wang, J., Kumbasar, T.: Parameter optimization of interval type-2 fuzzy neural networks based on PSO and BBBC methods. IEEE/CAA J. Autom. Sin. 6(1), 247–257 (2019)
Juang, C.-F., Huang, R.-B., Cheng, W.-Y.: An interval type-2 fuzzy neural network with support-vector regression for noisy regression problems. IEEE Trans. Fuzzy Syst. 18(4), 686–699 (2010)
Sumati, V., Patvardhan, C., Swarup, V.M.: Application of interval type-2 subsethood neural fuzzy inference system in classification. In: IEEE Region 10 Humanitarian Technology Conference, 2016, pp. 1–6 (2016)
Wang, C.-H., Cheng, C.-S., Lee, T.-T.: Dynamical optimal training for interval type-2 fuzzy neural network (T2FNN). IEEE Trans. Syst. Man Cybern. Part B Cybern. 34(3), 1462–1477 (2004)
Wang, H., Lue, C., Wang, X.: Synchronization and identification of nonlinear systems by using a novel self-evolving interval type-2 fuzzy LSTM neural network. Eng. Appl. Artif. Intell. 81, 79–93 (2019)
Kebria, P.M., Khosravi, A., Nahavandi, S., Wu, D., Bello, F.: Adaptive type-2 fuzzy neural network control for teleoperation systems with delay and uncertainties. IEEE Trans. Fuzzy Syst. 28(10), 2543–2554 (2020)
Dian, S., Hu, Y., Zhao, T., Han, J.: Adaptive backstepping control for flexible-joint manipulator using interval type-2 fuzzy neural network approximator. Nonlinear Dyn. 97(2), 1567–1580 (2019)
Juang, C.-F., Huang, R.-B., Lin, Y.-Y.: A recurrent self-evolving interval type-2 fuzzy neural network for dynamic system processing. IEEE Trans. Fuzzy Syst. 17(5), 1092–1105 (2009)
Han, H.-G., Li, J.-M., Wu, X.-L., Qiao, J.-F.: Cooperative strategy for constructing interval type-2 fuzzy neural network. Neurocomputing 365, 249–260 (2019)
Castillo, O., Castro, J.R., Melin, P., Diaz, A.R.: Application of interval type-2 fuzzy neural networks in non-linear identification and time series prediction. Soft. Comput. 18(6), 1213–1224 (2014)
Luo, C., Tan, C., Wang, X., Zheng, Y.: An evolving recurrent interval type-2 intuitionistic fuzzy neural network for online learning and time series prediction. Appl. Soft Comput. 78, 150–163 (2019)
Wang, L.X.: Fuzzy systems are universal approximators. In: IEEE international Conference on Fuzzy Systems, pp. 1163–1170 (1992)
Luo, Q., Yang, W.: Kernel shapes of fuzzy sets in fuzzy systems for function approximation. Inf. Sci. 178, 836–875 (2008)
Paul, S., Kumar, S.: Subsethood-product fuzzy neural inference system (SuPFuNIS). IEEE Trans. on Neural Netw. 13(3), 578–599 (2002)
Kayacan, E., Khanesar, M.A.: Fuzzy Neural Networks for Real-Time Control Applications: Concepts, Modeling, and algorithms for Fast Learning. Elsevier (2016)
Shukla, A.K., Yadav, M., Kumar, S., Muhuri, P.K.: Veracity handling and instance reduction in big data using interval type-2 fuzzy sets. Eng. Appl. Artif. Intell. 88, 1–16 (2020)
Wu, D., Mendel, J.M.: A comparative study of ranking methods, similarity measures and uncertainty measures for interval type-2 fuzzy sets. Inf. Sci. 179, 1169–1192 (2009)
Amer, N.S, Hefny, H.A.: Analytical formulas for similarity, possibility and distinguishability measures of Cauchy type fuzzy sets with comparison to Gaussian fuzzy set. In: IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS), pp. 21–26 (2015)
Narazaki, H., Ralescu, A.L.: An improved synthesis method for multilayered neural networks using qualitative knowledge. IEEE Trans. Fuzzy Syst. 1(2), 125–137 (1993)
Lin, Y., Cunningham, G.A.: A new approach to fuzzy-neural system modeling. IEEE Trans. Fuzzy Syst. 3(2), 190–198 (1995)
Russo, M.: FuGeNeSys a fuzzy genetic neural system for fuzzy modeling. IEEE Trans. Fuzzy Syst. 6(3), 373–388 (1998)
Velayutham, C.S., Kumar, S.: Asymmetric subsethood-product fuzzy neural inference system (ASuPFuNIS). IEEE Trans. Neural Netw. 16(1), 160–174 (2005)
Lin, C.J., Lin, T.C., Lee, C.Y.: An asymetry subsethood-based neural fuzzy network. Asian J. Control 10(1), 96–106 (2008)
Singh, L., Kumar, S., Paul, S.: Automatic simultaneous architecture and parameter search in fuzzy neural network learning using novel variable length crossover differential evolution. IEEE International Conference on Fuzzy Systems. In: IEEE World Congress on Computational Intelligence), pp. 1795–1802 (2008)
Sumati, V., Chellapilla, P., Paul, S., Singh, L.: Parallel interval type-2 subsethood neural fuzzy inference system. Expert Syst. Appl. 60, 156–168 (2016)
UCI Machine Learning Repository. Available at: https://archive.ics.uci.edu/~mlearn/MLRepository.html
Kasabov, N.K.: Learning fuzzy rules and approximate reasoning in fuzzy neural networks and hybrid systems. Fuzzy Sets and Syst. 82(2), 135–149 (1996)
Kasabov, N., Woodford, B.: Rule insertion and rule extraction from evolving fuzzy neural networks: algorithms and applications for building adaptive, intelligent expert systems. Proceeding of IEEE International Fuzzy Systems Conference, vol. 3. Seoul, Korea, pp. 1406–1411 (1999)
Chakraborty, D., Pal, N.R.: A neuro-fuzzy scheme for simultaneous feature selection and fuzzy rule-based classification. IEEE Trans. Neural Netw. 15(1), 110–123 (2004)
Halgamuge, S., Glesner, M.: Neural networks in designing fuzzy systems for real world applications. Fuzzy Sets Syst. 65, 1–12 (1994)
Nauk, D., Kruse, R.: A neuro-fuzzy method to learn fuzzy classification rules from data. Fuzzy Sets Syst. 89, 277–288 (1997)
UCI Machine Learning Repository. Available at: https://archive.ics.uci.edu/ml/datasetslauto+mpg
Juang, C.F., Tsao, Y.W.: A self-evolving interval type-2 fuzzy neural network with online structure and parameter learning. IEEE Trans. Fuzzy Syst. 16(6), 1411–1424 (2008)
Juang, C.F., Juang, K.J.: Reduced interval type-2 neural fuzzy system using weighted bound-set boundary operation for computation speedup and chip implementation. IEEE Trans. Fuzzy Syst. 21(3), 477–491 (2013)
Das, A.K., Subramanian, K., Sundaram, S.: An evolving interval type-2 neuro fuzzy inference system and is metacognitive sequential learning algorithm. IEEE Trans. Fuzzy Syst. 23(6), 2080–2093 (2015)
UCI Machine Learning Repository. Available at: https://archive.ics.uci.edu/ml/machine-learning-databases/abalone/
Deif, M., Hammam, R., Solyman, A.: Adaptive neuro-fuzzy inference system (ANFIS) for rapid diagnosis of COVID-19 cases based on routine blood tests. Int. J. Intell. Eng. Syst. 14, 178–189 (2021)
Kaagle datasets, COVID-19. Available at: https://www.kaggle.com/datasets/einsteindata4u/covid19?resource=download
Jang, J.-S.R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)
Duch, W., Janowski, N.: Survey of neural transfer functions. Neural Comput. Surv. 2, 163–212 (1999)
Duch, W., Janowski, N.: Transfer functions: hidden possibilities for better neural networks. In: Proceedings - European Symposium on Artificial Neural Networks (ESANN'2001), pp. 81–94 (2001)
Chandra, P., Ghose, U., Sood, A.: A non-sigmoidal activation function for feedforward artificial neural networks. In: International Joint Conference on Neural Networks (IJCNN). pp. 1–8 (2015)
Ghose, U., Chandra, P., Sood, A.: On the feasibility of solving regression learning tasks with FFANN using non-sigmoidal activation functions. In: International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT). pp. 495–500 (2015)
Abdelbar A.M., Abdelshahid S., Wunsch D.C.: Fuzzy PSO: a generalization of particle swarm optimization. In: Proceeding of IEEE International Joint Conference on Neural Networks (IJCNN), vol. 2. pp. 1086–1091 (2205)
Abdelbar A.M., Abdelshahid S., Wunsch D.C.: Gaussian versus Cauchy membership functions in fuzzy PSO. In: International Joint Conference on Neural Networks (IJCNN). pp. 2902–2907 (2007)
Huang, W., Li, Y.: Bell-shaped probabilistic fuzzy set for uncertainties modeling. J. Theor. Appl. Inf. Technol. 46(2), 875–882 (2012)
Liu, Z., Li, H.X.: A probabilistic fuzzy logic system for uncertainty modeling. In: IEEE International Conference on Systems, Man, and Cybernetics (ICSMC), vol. 4. pp. 3853–3858 (2005)
Liu, Z., Li, H.X.: A probabilistic fuzzy logic system for modeling and control. IEEE Trans. Fuzzy Syst. 13(6), 848–859 (2005)
Li, H.X., Liu, Z.: A probabilistic neural-fuzzy learning system for stochastic modeling. IEEE Trans. Fuzzy Syst. 16(4), 898–908 (2008)
Garibaldi, J.M., Jaroszewski, M., Musikasuwan, S.: Nonstationary fuzzy sets. IEEE Trans. Fuzzy Syst. 16(4), 1072–1086 (2008)
Zhang, G., Li, H.X.: An efficient configuration for probabilistic fuzzy logic system. IEEE Trans. Fuzzy Syst. 20(5), 898–909 (2012)
Wang, Y.: Type-2 fuzzy probabilistic system. In: 9th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). pp. 482–486 (2012)
Liy, Y., Wu, W., Fan, Q., Yang, D., Wang, J.: A modified learning algorithm with smoothing L1/2 regularization for Takagi-Sugeno fuzzy model. Neurocomputing 138, 229–237 (2014)
Li, H.X., Wang, Y., Zhang, G.: Probabilistic fuzzy classification for stochastic data. IEEE Trans. Fuzzy Syst. 25(6), 1391–1402 (2017)
Fang, W., Xie, T.: Robustness analysis of stability of Takagi-Sugeno type fuzzy neural network. AIMS Math. 8(12), 31118–31140 (2023)
Zhang, L., Shi, Y., Chang, Y.C., Lin, C.T.: Robust fuzzy neural network with an adaptive inference engine. IEEE Trans. Cybern. (2023). https://doi.org/10.1109/TCYB.2023.3241170
Das, R., Sen, S., Maulik, U.: A survey on fuzzy deep neural networks. ACM Comput. Surv. 53(3), 1–25 (2020)
Yeganejou, M., Dick, A.: Classification via deep fuzzy c-means clustering. In: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6 (2018)
Xi, Z., Panoutsos, G.: Interpretable machine learning: convolutional neural networks with RBF fuzzy logic classification rules. In: International Conference on Intelligent Systems (IS), pp. 448–454 (2018)
Sharma, D., Aujla, G.S., Bajaj, R.: Deep neuro-fuzzy approach for risk and severity prediction using recommendation systems in connected health care. Trans. Emerg. Telecommun. Technol. 32(7), 1–18 (2020)
Lin, C.J., Wu, M.Y., Chuang, Y.H., Lee, C.L.: Vector deep fuzzy neural network for breast cancer classification. Sens. Mater. 35(3), 795–811 (2023)
Liu, M., Shi, J., Li, Z., Li, C., Zhu, J., Liu, S.: Towards better analysis of deep convolutional neural networks. IEEE Trans. Vis. Comput. Graph. 23(1), 91–100 (2017)