Kiểm soát H∞ Dữ liệu Mẫu Fuzzy Loại 2 Đoạn Dưới Giao Tiếp Ngẫu Nhiên

International Journal of Fuzzy Systems - Tập 23 - Trang 2132-2143 - 2021
Zifang Qu1, Zhenbin Du2
1School of Mathematics and Information Science, Shandong Technology and Business University, Yantai, China
2School of Computer and Control Engineering, Yantai University, Yantai, China

Tóm tắt

Bài viết tập trung vào bài toán kiểm soát H∞ dữ liệu mẫu fuzzy loại 2 (IT2) cho các hệ thống phi tuyến với sự không chắc chắn về tham số và giao tiếp ngẫu nhiên. Các hệ thống phi tuyến được xây dựng dưới dạng fuzzy Takagi–Sugeno (T–S), và sự không chắc chắn về tham số được biểu diễn bằng cách sử dụng các hàm thuộcmembership. Một bộ điều khiển đáng tin cậy được thiết kế, dựa trên đó hệ thống vòng kín fuzzy ổn định và chỉ số H∞ được thỏa mãn. Trong phân tích, các ma trận trọng số tự do và các ma trận lỏng lẻo được giới thiệu, và kỳ vọng toán học cũng như bất đẳng thức ma trận tuyến tính (LMI) được sử dụng. Hơn nữa, bằng cách lấy hệ thống con lắc ngược làm ví dụ, tính ưu việt và khả năng ứng dụng của chiến lược kiểm soát được chứng minh.

Từ khóa

#kiểm soát H∞ #dữ liệu mẫu #fuzzy loại 2 #hệ thống phi tuyến #giao tiếp ngẫu nhiên #bất đẳng thức ma trận tuyến tính

Tài liệu tham khảo

Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985) Lam, H.K., Senevitatne, L.D.: Stability analysis of interval type-2 fuzzy-model-based control systems. IEEE Trans. Syst. Man Cybern. B 38(3), 617–628 (2008) Lam, H.K., Li, H.-Y., Deters, C., Secco, E.L., Wurdemann, H.A., Althoefer, K.: Control design for interval type-2 fuzzy systems under imperfect premise matching. IEEE Trans. Ind. Electron. 16(2), 956–968 (2014) Sheng, L., Ma, X.-Y.: Stability analysis and controller design of interval type-2 fuzzy systems with time delay. Int. J. Syst. Sci. 45(5), 977–993 (2014) Zhao, T., Xiao, J.: A new interval type-2 fuzzy controller for stabilization of interval type-2 fuzzy systems. J. Frankl. Inst. 352(4), 1627–1648 (2015) Zhao, T., Xiao, J., Sheng, H.-M., Wang, T.: H∞ control of continuous-time interval type-2 T-S fuzzy systems via dynamic output feedback controllers. Neurocomputing 165(1), 133–143 (2015) Li, H.-Y., Sun, X.-J., Wu, L.-G., Lam, H.K.: State and output feedback control of interval type-2 fuzzy systems with mismatched membership functions. IEEE Trans. Fuzzy Syst. 23(6), 1943–1957 (2015) Zhou, Q., Liu, D., Gao, Y.-B., Lam, H.K., Sakthivel, R.: Interval type-2 fuzzy control for nonlinear discrete-time systems with time-varying delays. Neurocomputing 157, 22–32 (2015) Gao, Y.-B., Li, H.-Y., Wu, L.-G., Karimi, H.R., Lam, H.K.: Optimal control of discrete-time interval type-2 fuzzy-model-based systems with D-stability constraint and control saturation. Signal Process. 120, 409–421 (2016) Zhao, T., Wei, Z.-B., Dian, S.-Y., Xiao, J.: Observer-based H∞ controller design for interval type-2 T-S fuzzy systems. Neurocomputing 177, 9–25 (2016) Li, H.-Y., Wang, J.-H., Lam, H.K., Zhou, Q., Du, H.-P.: Adaptive sliding mode control for interval type-2 fuzzy systems. IEEE Trans. Syst. Man Cybern. Syst. 46(12), 1654–1663 (2016) Wang, C.-J., Zhou, S.-S., Kong, Y.-Y.: State feedback control of interval type-2 T-S model based uncertain stochastic systems with unmatched premises. Neurocomputing 173, 1082–1095 (2016) Xiao, B., Lam, H.K., Li, H.-Y.: Stabilization of interval type-2 polynomial-fuzzy-model-based control systems. IEEE Trans. Fuzzy Syst. 25(1), 205–217 (2017) Zhao, T., Dian, S.-Y.: Delay-dependent stabilization of discrete-time interval type-2 T-S fuzzy systems with time-varying delay. J. Frankl. Inst. 354(3), 1542–1567 (2017) Tavoosi, J., Suratgar, A.A., Menhaj, M.B.: Stability analysis of recurrent type-2 TSK fuzzy systems with nonlinear consequent part. Neural Comput. Appl. 28, 47–56 (2017) Sun, X., Zhang, H.-G., Han, J., Wang, Y.-C.: Non-fragile control for interval type-2 TSK fuzzy logic control systems with time-delay. J. Frankl. Inst. 354, 7997–8014 (2017) Li, H.-Y., Wang, J.-H., Wu, L.-G., Lam, H.K., Gao, Y.-B.: Optimal guaranteed cost sliding mode control of interval type-2 fuzzy time-delay systems. IEEE Trans. Fuzzy Syst. 26(1), 246–257 (2018) Sakthivel, R., Karthick, S.A., Kaviarasan, B., Alzahrani, F.: Dissipativity-based non-fragile sampled-data control design of interval type-2 fuzzy systems subject to random delays. ISA Trans. 83, 154–164 (2018) Huang, J., Ri, M.H., Wu, D.-R., Ri, S.H.: Interval type-2 fuzzy logic modeling and control of a mobile two-wheeled inverted pendulum. IEEE Trans. Fuzzy Syst. 26(4), 2030–2038 (2018) Xiao, B., Lam, H.K., Yang, X.-Z., Yu, Y., Ren, H.-L.: Tracking control design of interval type-2 polynomial-fuzzy-model-based systems with time-varying delay. Eng. Appl. Artif. Intell. 75, 76–87 (2018) Sun, D., Liao, Q.-F., Ren, H.-L.: Type-2 fuzzy modeling and control for bilateral teleoperation system with dynamic uncertainties and time-varying delays. IEEE Trans. Ind. Electron. 65(1), 447–459 (2018) Sun, X.-J., Zhang, Q.-L.: Admissibility analysis for interval type-2 fuzzy descriptor systems based on sliding mode control. IEEE Trans. Cybern. 49(8), 3032–3040 (2019) Wang, Z.-S., Rong, N.-N., Zhang, H.-G.: Finite-time decentralized control of IT2 T-S fuzzy interconnected systems with discontinuous interconnections. IEEE Trans. Cybern. 49(9), 3547–3556 (2019) Rong, N.-N., Wang, Z.-S., Zhang, H.-G.: Finite-time stabilization for discontinuous interconnected delayed systems via interval type-2 T-S fuzzy model approach. IEEE Trans. Fuzzy Syst. 27(2), 249–261 (2019) Rong, N.-N., Wang, Z.-S., Ding, S.-B., Zhang, H.-G.: Interval type-2 regional switching T-S fuzzy control for time-delay systems via membership function dependent approach. Fuzzy Sets Syst. 374, 152–169 (2019) Zhao, Y., Wang, J.-H., Yan, F., Shen, Y.: Adaptive sliding mode fault-tolerant control for type-2 fuzzy systems with distributed delays. Inf. Sci. 473, 227–238 (2019) Kavikumar, R., Sakthivel, R., Kwon, O.M., Kaviarasan, B.: Finite-time boundedness of interval type-2 fuzzy systems with time delay and actuator faults. J. Frankl. Inst. 356, 8296–8324 (2019) Zhao, T., Liu, J.-H., Dian, S.-Y.: Finite-time control for interval type-2 fuzzy time-delay systems with norm-bounded uncertainties and limited communication capacity. Inf. Sci. 483, 153–173 (2019) Kavikumar, R., Sakthivel, R., Kaviarasan, B., Kwon, O.M., Anthoni, S.M.: Non-fragile control design for interval-valued fuzzy systems against nonlinear actuator faults. Fuzzy Sets Syst. 365, 40–59 (2019) Zheng, W., Zhang, Z.-M., Wang, H.-B., Wang, H.-G.: Robust dynamic output feedback control for interval type-2 T-S fuzzy multiple time-varying delays systems with external disturbance. J. Frankl. Inst. 357(6), 3193–3218 (2020) Sun, J.-Y., Zhang, H.-G., Jiang, H., Han, J.: Unknown input based observer synthesis for an interval type-2 polynomial fuzzy system with time delays and uncertainties. Neurocomputing 339, 171–181 (2019) Rong, N.-N., Wang, Z.-S.: Fixed-time stabilization for IT2 T-S fuzzy interconnected systems via event-triggered mechanism: an exponential gain method. IEEE Trans. Fuzzy Syst. 28(2), 246–258 (2020) Li, H.-Y., Sun, X.-J., Shi, P., Lam, H.K.: Control design of interval type-2 fuzzy systems with actuator fault: sampled-data control approach. Inf. Sci. 302(1), 1–13 (2015) Du, Z.-B., Yan, Z.-Z., Zhao, Z.: Interval type-2 fuzzy tracking control for nonlinear systems via sampled-data controller. Fuzzy Sets Syst. 356, 92–112 (2019) Du, Z.-B., Kao, Y.-G., Park, J.H.: Interval type-2 fuzzy sampled-data control of time-delay systems. Inf. Sci. 487, 193–207 (2019) Du, Z.-B., Kao, Y.-G., Park, J.H.: New results for sampled-data control of interval type-2 fuzzy nonlinear systems. J. Frankl. Inst. 357(1), 121–141 (2020) Qu, Z.-F., Zhang, Z.-D., Du, Z.-B., Peng, M.: Interval type-2 fuzzy sampled-data optimal control for nonlinear systems with multiple conditions. Int. J. Fuzzy Syst. 21(5), 1480–1496 (2019) Du, Z.-B., Kao, Y.-G., Karimi, H.R., Zhao, X.-D.: Interval type-2 fuzzy sampled-data H∞ control for nonlinear unreliable networked control systems. IEEE Trans. Fuzzy Syst. 28(7), 1434–1448 (2020) Du, Z.-B., Kao, Y.-G., Zhao, X.-D.: An input delay approach to interval type-2 fuzzy exponential stabilization for nonlinear unreliable networked sampled-data control systems. IEEE Trans. Syst. Man Cybern. (2019). https://doi.org/10.1109/TSMC.2019.2930473 Subramanian, K., Young, H.-J.: Stabilization of interval type-2 fuzzy-based reliable sampled-data control systems. IEEE Trans. Cybern. (2020). https://doi.org/10.1109/TCYB.2020.3001609 Xiao, B., Lam, H.K., Y.-Yu and Y.-D. Li, : Sampled-data output-feedback tracking control for interval type-2 polynomial fuzzy systems. IEEE Trans. Fuzzy Syst. 28(3), 424–433 (2020) Wang, Y.-Y., Yang, X.-X., Yan, H.-C.: Reliable fuzzy tracking control of near-space hypersonic vehicle using aperiodic measurement information. IEEE Trans. Ind. Electron. 66(12), 9439–9447 (2019) Li, X.-H., Ye, D.: Asynchronous event-triggered control for networked interval type-2 fuzzy systems against DoS attacks. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2975495 Kao, Y.-G., Li, Y., Park, J.H., Chen, X.-Y.: Mittag-Leffler synchronization of delayed fractional memristor neural networks via adaptive control. IEEE Trans. Neural Netw. Learn. Syst. (2020). https://doi.org/10.1109/TNNLS.2020.2995718 Wang, Y.-Y., Xia, Y.-Q., Zhou, P.-F.: Fuzzy-model-based sampled-data control of chaotic systems: a fuzzy time-dependent Lyapunov-Krasovskii functional approach. IEEE Trans. Fuzzy Syst. 25(6), 1672–1684 (2017) Cheng, J., Zhang, D., Qi, W., Cao, J., Shi, K.: Finite-time stabilization of T-S fuzzy semi-Markov switching systems: a coupling memory sampled-data control approach. J. Frankl. Inst. 357(16), 11265–11280 (2020) Cheng, J., Park, J.H., Zhao, X., Karimi, H.R., Cao, J.: Quantized nonstationary filtering of network-based Markov switching RSNSs: a multiple hierarchical structure strategy. IEEE Trans. Autom. Control 65(11), 4816–4823 (2020) Cheng, J., Park, J.H., Cao, J., Qi, W.: A hidden mode observation approach to finite-time SOFC of Markovian switching systems with quantization. Nonlinear Dyn. 100, 509–521 (2020)