Interval Finite Elements as a Basis for Generalized Models of Uncertainty in Engineering Mechanics
Tóm tắt
Từ khóa
Tài liệu tham khảo
Akpan, U. O., Koko, T. S., Orisamolu, I. R., and Gallant, B. K.: Practical Fuzzy Finite Element Analysis of Structures, Finite Elem. Anal. Des. 38 (2001), pp. 93–111.
Alefeld, G. and Herzberger, J.: Introduction to Interval Computations, Academic Press, New York, 1983.
Apostolatos, N. and Kulisch, U.: Grundzuge einer Intervallrechtung fur Matrizen und einige Anwwendungen, Elektron. Rechenanlagen 10 (1968), pp. 73–83 (in German).
Bathe, K.: Finite Element Procedures, Prentice Hall, Upper Saddle River, 1996.
Ben-Haim, Y. and Elishakoff, I.: Convex Models of Uncertainty in Applied Mechanics, Elsevier Science, Amsterdam, 1990.
Berleant, D.: Automatically Verified Reasoning with Both Intervals and Probability Density Functions, Interval Computations (2) (1993), pp. 48–70.
Buonopane, S. G., Schafer, B. W., and Igusa, T.: Reliability Implications of Advanced Analysis in Design of Steel Frames, in: Proc. ASSCCA'03, Sydney, 2003.
Chen, S. H., Lian, H. D., and Yang, X. W.: Interval Static Displacement Analysis for Structures with Interval Parameters, Int. J. Numer. Methods Engrg. 53 (2002), pp. 393–407.
Cook, R. D., Malkus, D. S., and Plesha, M. E.: Concepts and Applications of Finite Element Analysis, John Wiley & Sons, 1989.
Dempster, A. P.: Upper and Lower Probabilities Induced by a Multi-Valued Mapping, Ann. Mat. Stat. 38 (1967), pp. 325–339.
Dessombz, O., Thouverez, F., Laîné, J.-P., and Jézéquel, L.: Analysis of Mechanical Systems Using Interval Computations Applied to Finite Elements Methods, J. Sound. Vib. 238 (5) (2001), pp. 949–968.
Ferson, S. and Ginzburg, L. R.: Different Methods Are Needed to Propagate Ignorance and Variability, Reliab. Engng. Syst. Saf. 54 (1996), pp. 133–144.
Ferson, S., Kreinovich, V., Ginzburg, L., Myers, D. S., and Sentz, K.: Constructing Probability Boxes and Dempster-Shafer Structures, Technical Report SAND2002-4015, Sandia National Laboratories, 2003.
Gallagher, R. H.: Finite Element Analysis Fundamentals, Prentice Hall, Englewood Cliffs, 1975.
Ganzerli, S. and Pantelides, C. P.: Load and Resistance Convex Models for Optimum Design, Struct. Optim. 17 (1999), pp. 259–268.
Hansen, E.: Global Optimization Using Interval Analysis, Marcel Dekker, New York, 1992.
Hansen, E.: Interval Arithmetic in Matrix Computation, SIAM J. Numer. Anal. I (2) (1965), pp. 308–320.
Jansson, C.: Interval Linear System with Symmetric Matrices, Skew-Symmetric Matrices, and Dependencies in the Right Hand Side, Computing 46 (1991), pp. 265–274.
Kearfott, R. B., Nakao, M., Neumaier, A., Rump, S., Shary, S., and van Hentenryck, P.: Standardized Notation in Interval Analysis, Reliable Computing, submitted.
Kendall, D. G.: Foundations of a Theory of Random Sets, in: Harding, E. and Kendall, D. (eds), Stochastic Geometry, New York, 1974, pp. 322–376.
Koyluoglu, U., Cakmak, S., Ahmet, N., and Soren, R. K.: Interval Algebra to Deal with Pattern Loading and Structural Uncertainty, J. Engrg. Mech. 121 (11) (1995), pp. 1149–1157.
Lodwick, W. A. and Jamison, K. D.: Special Issue: Interface between Fuzzy Set Theory and Interval Analysis, Fuzzy Sets and Systems 135 (2002), pp. 1–3.
Mayer, O.: Algebraische und Metrische Strukturen in der Intervallrechung und eingine Anwendungen, Computing 5 (1970), pp. 144–162 (in German).
McWilliam, S.: Anti-Optimisation of Uncertain Structures Using Interval Analysis, Comput. Struct. 79 (2000), pp. 421–430.
Melchers, R. E.: Structural Reliability Analysis and Prediction, 2 edition, John Wiley & Sons, West Sussex, 1999.
Moller, B., Graf, W., and Beer, M.: Fuzzy Structural Analysis Using Level-Optimization, Comput. Mech. 26 (6) (2000), pp. 547–565.
Moore, R. E.: Interval Analysis, Prentice Hall, Englewood Cliffs, 1966.
Muhanna, R. L. and Mullen, R. L.: Development of Interval Based Methods for Fuzziness in Continuum Mechanics, in: Proc. ISUMA-NAFIPS'95, 1995, pp. 23–45.
Muhanna, R. L. and Mullen, R. L.: Formulation of Fuzzy Finite Element Methods for Mechanics Problems, Compu.-Aided Civ. Infrastruct. Engrg. 14 (1999), pp. 107–117.
Muhanna, R. L. and Mullen, R. L.: Uncertainty in Mechanics Problems–Interval-Based Approach, J. Engrg. Mech. 127 (6) (2001), pp. 557–566.
Mullen, R. L. and Muhanna, R. L.: Bounds of Structural Response for All Possible Loadings, J. Struct. Engrg., ASCE 125 (1) (1999), pp. 98–106.
Mullen, R. L. and Muhanna, R. L.: Structural Analysis with Fuzzy-Based Load Uncertainty, in: Proc. 7th ASCE EMD/STD Joint Spec. Conf. on Probabilistic Mech. and Struct. Reliability, 1996, pp. 310–313.
Neumaier, A.: Overestimation in Linear Interval Equations, SIAM J. Numer. Anal. 24 (1) (1987), pp. 207–214.
Neumaier, A.: Rigorous Sensitivity Analysis for Parameter-Dependent Systems of Equations, J. Math. Anal. Appl. 144 (1989), pp. 14–25.
Pantelides, C. P. and Ganzerli, S.: Comparison of Fuzzy Set and Convex Model Theories in Structural Design, Mech. Systems Signal Process. 15 (3) (2001), pp. 499–511.
Pownuk, A.: Calculation of the Extreme Values of Displacements in Truss Structures with Interval Parameters, 2004, http://s212.bud.polsl.gliwice.pl/ andrzej/ php/apdl2interval/apdl2interval init.php.
Pownuk, A.: Efficient Method of Solution of Large Scale Engineering Problems with Interval Parameters, in: Muhanna, R. L. and Mullen, R. L. (eds), Proc. NSF Workshop on Reliable Engineering Computing, Savannah, 2004, http://www.gtsav.gatech.edu/rec/recworkshop/index.html.
Rao, S. S. and Berke, L.: Analysis of Uncertain Structural Systems Using Interval Analysis, AIAA J. 35 (4) (1997), pp. 727–735.
Rao, S. S. and Chen, L.: Numerical Solution of Fuzzy Linear Equations in Engineering Analysis, Int. J. Numer. Meth. Engng. 43 (1998), pp. 391–408.
Rohn, J.: Linear Interval Equations: Computing Sufficiently Accurate Enclosures Is NP-Hard, Technical Report 621, Institute of Computer Science, Academy of Sciences of the Czech Republic, 1995.
Rump, S. M.: Solving Algebraic Problems with High Accuracy, in: Kulisch, U. and Miranker, W. (eds), A New Approach to Scientific Computation, Academic Press, New York, 1983.
Sentz, K. and Ferson, S.: Combination of Evidence in Dempster-Shafer Theory, Technical Report SAND2002–0835, Sandia National Laboratories, 2002.
Sun Microsystems: Interval Arithmetic in High Performance Technical Computing, Sun Microsystems, 2002 (a White Paper).
Zadeh, L. A.: Fuzzy Sets as a Basis for a Theory of Possibility, Fuzzy Sets and Systems 1 (1978), pp. 3–28.
Zhang, H.: Nodeterministic Linear Static Finite Element Analysis: An Interval Approach, Ph.D. thesis, Georgia Institute of Technology, 2005.