Interval Estimation for a Binomial Proportion

Statistical Science - Tập 16 Số 2 - 2001
Lawrence D. Brown, Tommaso Cai, Anirban Dasgupta

Tóm tắt

Từ khóa


Tài liệu tham khảo

Rao, C. R. (1973). Linear statistical inference and its applications. Wiley, New York.

Datta, G. S. and Ghosh, M. (1996). On the invariance of noninformative priors. Ann. Statist. 24 141-159.

Lehmann, E. L. (1999). Elements of Large-Sample Theory. Springer, New York.

AGRESTI, A. and COULL, B. A. (1998). Approximate is better than "exact" for interval estimation of binomial proportions. Amer. Statist. 52 119-126.

BLYTH, C. R. and STILL, H. A. (1983). Binomial confidence intervals. J. Amer. Statist. Assoc. 78 108-116.

GHOSH, J. K. (1994). Higher Order Asymptotics. IMS, Hayward, CA.

STERNE, T. E. (1954). Some remarks on confidence or fiducial limits. Biometrika 41 275-278.

Tibshirani, R. (1989). Noninformative priors for one parameter of many. Biometrika 76 604-608.

Wilson, E. B. (1927). Probable inference, the law of succession, andstatistical inference. J. Amer. Statist. Assoc. 22 209-212.

Larson, H. J. (1974). Introduction to Probability Theory and Statistical Inference, 2nded. Wiley, New York.

Yamagami, S. and Santner, T. J. (1993). Invariant small sample confidence intervals for the difference of two success probabilities. Comm. Statist. Simul. Comput. 22 33-59.

Abramowitz, M. and Stegun, I. A. (1970). Handbook of Mathematical Functions. Dover, New York.

Anscombe, F. J. (1948). The transformation of Poisson, binomial andnegative binomial data. Biometrika 35 246-254.

Anscombe, F. J. (1956). On estimating binomial response relations. Biometrika 43 461-464.

Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis, 2nded. Springer, New York.

Berry, D. A. (1996). Statistics: A Bayesian Perspective. Wadsworth, Belmont, CA.

Bickel, P. and Doksum, K. (1977). Mathematical Statistics. Prentice-Hall, EnglewoodCliffs, NJ.

Brown, L. D., Cai, T. and DasGupta, A. (1999). Confidence intervals for a binomial proportion andasymptotic expansions. Ann. Statist to appear.

Brown, L. D., Cai, T. and DasGupta, A. (2000). Interval estimation in discrete exponential family. Technical report, Dept. Statistics. Univ. Pennsylvania.

Casella, G. (1986). Refining binomial confidence intervals Canad. J. Statist. 14 113-129.

Casella, G. and Berger, R. L. (1990). Statistical Inference. Wadsworth & Brooks/Cole, Belmont, CA.

Clopper, C. J. and Pearson, E. S. (1934). The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26 404-413.

Cox, D. R. and Snell, E. J. (1989). Analysis of Binary Data, 2nd ed. Chapman and Hall, London.

Cressie, N. (1980). A finely tunedcontinuity correction. Ann. Inst. Statist. Math. 30 435-442.

Ghosh, B. K. (1979). A comparison of some approximate confidence intervals for the binomial parameter J. Amer. Statist. Assoc. 74 894-900.

Hall, P. (1982). Improving the normal approximation when constructing one-sided confidence intervals for binomial or Poisson parameters. Biometrika 69 647-652.

Newcombe, R. G. (1998). Two-sided confidence intervals for the single proportion; comparison of several methods. Statistics in Medicine 17 857-872.

Samuels, M. L. and Witmer, J. W. (1999). Statistics for the Life Sciences, 2nded. Prentice Hall, Englewood Cliffs, NJ.

Santner, T. J. (1998). A note on teaching binomial confidence intervals. Teaching Statistics 20 20-23.

Santner, T. J. and Duffy, D. E. (1989). The Statistical Analysis of Discrete Data. Springer, Berlin.

Stone, C. J. (1995). A Course in Probability and Statistics. Duxbury, Belmont, CA.

Strawderman, R. L. and Wells, M. T. (1998). Approximately exact inference for the common odds ratio in several 2 × 2 tables (with discussion). J. Amer. Statist. Assoc. 93 1294- 1320.

Tamhane, A. C. and Dunlop, D. D. (2000). Statistics and Data Analysis from Elementary to Intermediate. Prentice Hall, EnglewoodCliffs, NJ.

Vollset, S. E. (1993). Confidence intervals for a binomial proportion. Statistics in Medicine 12 809-824.

Wasserman, L. (1991). An inferential interpretation of default priors. Technical report, Carnegie-Mellon Univ.

Agresti, A. andCaffo, B. (2000). Simple andeffective confidence intervals for proportions and differences of proportions result from adding two successes and two failures. Amer. Statist. 54. To appear.

Aitkin, M., Anderson, D., Francis, B. and Hinde, J. (1989). Statistical Modelling in GLIM. OxfordUniv. Press.

Boos, D. D. and Hughes-Oliver, J. M. (2000). How large does n have to be for Z and t intervals? Amer. Statist. 54 121-128. Brown, L. D., Cai, T. and DasGupta, A. (2000a). Confidence intervals for a binomial proportion andasymptotic expansions. Ann. Statist. To appear. Brown, L. D., Cai, T. and DasGupta, A. (2000b). Interval estimation in exponential families. Technical report, Dept. Statistics, Univ. Pennsylvania.

Brown, L. D. and Li, X. (2001). Confidence intervals for the difference of two binomial proportions. Unpublished manuscript.

Cai, T. (2001). One-sided confidence intervals and hypothesis testing in discrete distributions. Preprint.

Coe, P. R. and Tamhane, A. C. (1993). Exact repeatedconfidence intervals for Bernoulli parameters in a group sequential clinical trial. Controlled Clinical Trials 14 19-29.

Cox, D. R. and Reid, N. (1987). Orthogonal parameters and approximate conditional inference (with discussion). J. Roy. Statist. Soc. Ser. B 49 113-147.

DasGupta, A. (2001). Some further results in the binomial interval estimation problem. Preprint.

Duffy, D. and Santner, T. J. (1987). Confidence intervals for a binomial parameter basedon multistage tests. Biometrics 43 81-94.

Fisher, R. A. (1956). Statistical Methods for Scientific Inference. Oliver and Boyd, Edinburgh.

Gart, J. J. (1966). Alternative analyses of contingency tables. J. Roy. Statist. Soc. Ser. B 28 164-179.

Garvan, C. W. and Ghosh, M. (1997). Noninformative priors for dispersion models. Biometrika 84 976-982.

Hall, P. (1983). Chi-squaredapproximations to the distribution of a sum of independent random variables. Ann. Statist. 11 1028-1036.

Jennison, C. and Turnbull, B. W. (1983). Confidence intervals for a binomial parameter following a multistage test with application to MIL-STD 105D andmedical trials. Technometrics, 25 49-58.

Jorgensen, B. (1997). The Theory of Dispersion Models. CRC Chapman andHall, London.

Laplace, P. S. (1812). Th´eorie Analytique des Probabilit´es. Courcier, Paris.

Pratt, J. W. (1961). Length of confidence intervals. J. Amer. Statist. Assoc. 56 549-567.

Rindskopf, D. (2000). Letter to the editor. Amer. Statist. 54 88.

Rubin, D. B. and Schenker, N. (1987). Logit-basedinterval estimation for binomial data using the Jeffreys prior. Sociological Methodology 17 131-144.

Welch, B. L. and Peers, H. W. (1963). On formula for confidence points basedon intergrals of weightedlikelihoods. J. Roy. Statist. Ser. B 25 318-329.