Interstitial strengthening in f.c.c. metals and alloys
Tài liệu tham khảo
Fleischer, 1961, Solution hardening, Acta Metall., 9, 996, 10.1016/0001-6160(61)90242-5
Labusch, 1970, A statistical theory of solid solution hardening, Phys. Status Solidi, 41, 659, 10.1002/pssb.19700410221
Mott, 1948, Report on conference on the strength of solids, Physica, 1
Friedel, 1956, 205
Arsenault, 1989, Computer-simulation of solid-solution strengthening in FCC alloys .1. Friedel and Mott limits, Metall. Trans. A, 20, 1411, 10.1007/BF02665498
Honeycombe, 1975
Ardley, 2019, Yield points in brass crystals, Proc. Roy. Soc. Lond. Math. Phys. Sci., 1138, 328
Brindley, 1962, Yield points and luders bands in single crystals of copper-base alloys, Acta Metall., 10, 1043, 10.1016/0001-6160(62)90073-1
1986
Yamamoto, 1986, Effect of metallurgical variables on strength and toughness of Mn−Cr and Ni−Cr stainless steels at 4.2 K, 32, 57
Werner, 1988, Solid-solution and grain-size hardening of nitrogen-alloyed austenitic steels, Mater. Sci. Eng. A, 101, 93
Thomas, 1963, Effect of short-range order on stacking fault energy and dislocation arrangements in F.C.C. Solid solutions, Acta Metall., 11, 1369, 10.1016/0001-6160(63)90035-X
Talha, 2015, Effect of nitrogen and cold working on structural and mechanical behavior of Ni-free nitrogen containing austenitic stainless steels for biomedical applications, Mater. Sci. Eng. C, 47, 196, 10.1016/j.msec.2014.10.078
Taillard, 1987, Effect of N Upon the low-cycle fatigue behaviour of 316 L stainless steels
Stoltz, 1980, The effect of nitrogen on stacking-fault energy of Fe−Ni−Cr−Mn steels, Metall. Trans. A, 11, 1033, 10.1007/BF02654717
Simmons, 1996, Overview: high-nitrogen alloying of stainless steels, Mater. Sci. Eng. A, 207, 159, 10.1016/0921-5093(95)09991-3
Sassen, 1989, Electron microscopy of austenitic Fe−Ni−Cr alloys containing N, 159
Sandstrom, 1977, Temperature-dependence of tensile properties and strengthening of nitrogen alloyed austenitic stainless-steels, Scand. J. Metall., 6, 156
Sakamoto, 1984, N-containing 25Cr-13Ni stainless steel as a cryogenic structural material, Adv. Cryog. Eng. Mater., 30, 137, 10.1007/978-1-4613-9868-4_17
Reed, 1989, Nitrogen Strengthening of Austenitic Stainless Steels at Low Temperatures, 108
Reed, 1989, Nitrogen in austenitic stainless-steels, J. Miner. Met. Mater. Soc., 41, 16, 10.1007/BF03220991
Norstrom, 1977, Work-hardening mechanism in high-N austenitic stainless steel, Met. Sci., 11, 208
Masumura, 2020, Work-hardening mechanism in high-nitrogen austenitic stainless steel, Mater. Trans., 61, 678, 10.2320/matertrans.H-M2020804
Ledbetter, 1985, stacking fault energies in 304-type stainless steels: effects of interstitial C and N, 271
Irvine, 1969, Strength of austenitic stainless steels, J. Iron Steel Inst., 207, 1017
Irvine, 1961, High-strength austenitic stainless steels, Iron Steel Inst. Jpn., 199, 153
Grujicic, 1989, 151
Fujikura, 1978, Effects of C, N and nickel content on the low temperature impact value of high manganese austentic steel, J. Iron Steel Inst. Jpn., 64, 97
Byun, 2003, On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels, Acta Mater., 51, 3063, 10.1016/S1359-6454(03)00117-4
Byrnes, 1987, Nitrogen strengthening of a stable austenitic stainless-steel, Acta Metall., 35, 1853, 10.1016/0001-6160(87)90131-3
Boes, 2020, Microstructure and properties of high-strength C plus N austenitic stainless steel processed by laser powder bed fusion, Addit. Manuf., 32
Berns, 2008, Intensive interstitial strengthening of stainless steels, Adv. Eng. Mater., 10, 1083, 10.1002/adem.200800214
Yoo, 2008, Microband-induced plasticity in a high Mn−Al−C light steel, Mater. Sci. Eng. A, 496
Yen, 2012, Interactions between deformation-induced defects and carbides in a vanadium-containing TWIP steel, Scripta Mater., 66, 1018, 10.1016/j.scriptamat.2012.02.002
Yang, 2010
Scott, 2006, The development of a new Fe−Mn−C austenitic steel for automotive applications, Rev. Metall. Cah. D Inf. Tech., 103, 293
Neu, 2013, Performance and characterization of TWIP steels for automotive applications, Mater. Perform. Char., 2, 244
Kang, 2010, Effects of recrystallization annealing temperature on carbide precipitation, microstructure, and mechanical properties in Fe−18Mn−0.6C−1.5Al TWIP steel, Mater. Sci. Eng. A, 527, 745, 10.1016/j.msea.2009.08.048
Grassel, 1997, Phase transformations and mechanical properties of Fe−Mn−Si−Al TRIP-steels, J. Phys. IV, 7, 383
Frommeyer, 2003, Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes, ISIJ Int., 43, 438, 10.2355/isijinternational.43.438
Cooman, 2011, High Mn TWIP steels for automotive applications
Ye, 2020, Effect of interstitial oxygen and nitrogen on incipient plasticity of NbTiZrHf high-entropy alloys, Acta Mater., 199, 413, 10.1016/j.actamat.2020.08.065
Xiong, 2020, Effects of nitrogen alloying and friction stir processing on the microstructures and mechanical properties of CoCrFeMnNi high-entropy alloys, J. Alloys Compd., 822, 10.1016/j.jallcom.2019.153512
Xiao, 2020, Effect of carbon content on microstructure, hardness and wear resistance of cocrfemnnicx high-entropy alloys, J. Alloys Compd., 847, 10.1016/j.jallcom.2020.156533
Wu, 2021, Short-range ordering and its effects on mechanical properties of high-entropy alloys, J. Mater. Sci. Technol., 62, 214, 10.1016/j.jmst.2020.06.018
Wei, 2018, Strengthening of Fe40mn40Co10Cr10 high entropy alloy via Mo/C alloying, Mater. Lett., 219, 85, 10.1016/j.matlet.2018.02.065
Wang, 2016, The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys, Acta Mater., 120, 228, 10.1016/j.actamat.2016.08.072
Stepanov, 2017, Effect of thermomechanical processing on microstructure and mechanical properties of the carbon-containing CoCrFeNiMn high entropy alloy, J. Alloys Compd., 693, 394, 10.1016/j.jallcom.2016.09.208
Song, 2019, N induced heterogeneous structures overcome strength-ductility trade-off in an additively manufactured high-entropy alloy, Appl. Mater. Today, 18, 100498, 10.1016/j.apmt.2019.100498
Song, 2020, Mechanical performance and microstructural evolution of (NiCo)75Cr17Fe8Cx (X = 0.83) medium entropy alloys at room and cryogenic temperatures, Metals, 10, 12, 10.3390/met10121646
Shang, 2019, Solving the strength-ductility tradeoff in the medium-entropy NiCoCr alloy via interstitial strengthening of carbon, Intermetallics, 106, 77, 10.1016/j.intermet.2018.12.009
Shang, 2020
Semenyuk, 2021, Effect of nitrogen on microstructure and mechanical properties of the CoCrFeMnNi high-entropy alloy after cold rolling and subsequent annealing, J. Alloys Compd., 888, 10.1016/j.jallcom.2021.161452
Ravi, 2021, Microstructural evolution and wear behavior of carbon added CoCrFeMnNi multi-component alloy fabricated by mechanical alloying and spark plasma sintering, J. Alloys Compd., 883, 10.1016/j.jallcom.2021.160879
Moravcik, 2020, Interstitial doping enhances the strength-ductility synergy in a CoCrNi medium entropy alloy, Mater. Sci. Eng. A, 781, 10.1016/j.msea.2020.139242
Moravcik, 2020, Yield strength increase of a CoCrNi medium entropy alloy by interstitial nitrogen doping at maintained ductility, Scripta Mater., 178, 391, 10.1016/j.scriptamat.2019.12.007
Moravcik, 2020, Interstitial N enhances corrosion resistance of an equiatomic CoCrNi medium-entropy alloy in sulfuric acid solution, Mater. Char., 172, 110869, 10.1016/j.matchar.2020.110869
Lu, 2021, Influence of C on the mechanical behavior and microstructure evolution of CoCrFeMnNi processed by high pressure torsion, Materialia, 16, 101059, 10.1016/j.mtla.2021.101059
Liu, 2020, Effect of C Addition on microstructure and mechanical properties of as-cast heas (Fe50Mn30Co10Cr10)100-XCX, Mater. Chem. Phys., 254, 10.1016/j.matchemphys.2020.123501
Liu, 2019, Solute segregation effect on grain boundary migration and Hall-petch relationship in CrMnFeCoNi high-entropy alloy, Mater. Sci. Technol., 35, 500
Li, 2019, Interstitial equiatomic cocrfemnni high-entropy alloys: carbon content, microstructure, and compositional homogeneity effects on deformation behavior, Acta Mater., 164, 400, 10.1016/j.actamat.2018.10.050
Klimova, 2019, Effect of carbon on cryogenic tensile behavior of CoCrFeMnNi-type high entropy alloys, J. Alloys Compd., 811, 10.1016/j.jallcom.2019.152000
Klimova, 2021, Effect of carbon on recrystallised microstructures and properties of CoCrFeMnNi-type high-entropy alloys, J. Alloys Compd., 851, 156839, 10.1016/j.jallcom.2020.156839
Klimova, 2020, Effect of nitrogen on mechanical properties of CoCrFeMnNi high entropy alloy at room and cryogenic temperatures, J. Alloys Compd., 849, 156633, 10.1016/j.jallcom.2020.156633
Kim, 2020, Nano-scale solute heterogeneities in the ultrastrong selectively laser melted carbon-doped CoCrFeMnNi alloy, Mater. Sci. Eng. A, 773, 138726, 10.1016/j.msea.2019.138726
Kies, 2020, Combined Al and C alloying enables mechanism-oriented design of multi-principal element alloys: ab initio calculations and experiments, Scripta Mater., 178, 366, 10.1016/j.scriptamat.2019.12.004
Jodi, 2020, Investigation on the precipitate formation and behavior in nitrogen-containing equiatomic CoCrFeMnNi high-entropy alloy, Mater. Lett., 258, 126806, 10.1016/j.matlet.2019.126806
He, 2021, Synergy effect of multi-strengthening mechanisms in FeMnCoCrN HEA at cryogenic temperature, J. Mater. Sci. Technol., 86, 158, 10.1016/j.jmst.2020.12.079
He, 2021, Multi-heterostructure and mechanical properties of N-doped FeMnCoCr high entropy alloy, Int. J. Plast., 139, 102965, 10.1016/j.ijplas.2021.102965
Han, 2021, Simultaneous enhancement in strength and ductility of Fe50Mn30Co10Cr10 high-entropy alloy via nitrogen alloying, J. Mater. Sci. Technol., 65, 210, 10.1016/j.jmst.2020.04.072
Han, 2020, Enhancing the strength and ductility of CoCrFeMnNi high-entropy alloy by nitrogen addition, Mater. Sci. Eng. A, 789, 139587, 10.1016/j.msea.2020.139587
Gan, 2021, Interstitial effects on the incipient plasticity and dislocation behavior of a metastable high-entropy alloy: nanoindentation experiments and statistical modeling, Acta Mater., 206, 116633, 10.1016/j.actamat.2021.116633
Chung, 2021, Strengthening and deformation mechanism of a Fe20Co20Cr20Mn20Ni20 high entropy alloy with high nitrogen content, J. Alloys Compd., 871, 159587, 10.1016/j.jallcom.2021.159587
Chen, 2021, Direct observation of chemical short-range order in a medium-entropy alloy, Nature, 592, 712, 10.1038/s41586-021-03428-z
Chen, 2020, Gradient structure design to strengthen carbon interstitial Fe40Mn40Co10Cr10 high entropy alloys, Mater. Sci. Eng. A, 772, 138661, 10.1016/j.msea.2019.138661
Chen, 2018, Effect of C Content on microstructure and tensile properties of as-cast CoCrFeMnNi high entropy alloy, Mater. Chem. Phys., 210, 136, 10.1016/j.matchemphys.2017.08.011
Baker, 2020, Interstitials in F.C.C. high entropy alloys, Metals, 10, 695, 10.3390/met10050695
Astafurova, 2020, On the difference in carbon- and nitrogen-alloying of equiatomic FeMnCrNiCo high-entropy alloy, Mater. Lett., 276, 128183, 10.1016/j.matlet.2020.128183
Astafurova, 2021, The effect of nitrogen alloying on hydrogen-assisted plastic deformation and fracture in FeMnNiCoCr high-entropy alloys, Scripta Mater., 194, 113642, 10.1016/j.scriptamat.2020.113642
Astafurova, 2021, A comparative study of a solid solution hardening in carbon-alloyed FeMnCrNiCo0.95C0.05 high-entropy alloy subjected to different thermal- mechanical treatments, Mater. Lett., 285, 129073, 10.1016/j.matlet.2020.129073
Schulson, 1990, The strength and ductility of Ni3Si, Acta Metall. Mater., 38, 207, 10.1016/0956-7151(90)90050-Q
Fang, 1992, The strength and ductility of Ni3Ge with and without boron, Mater. Sci. Eng. A, 152
Baker, 1988, The effect of boron on the lattice properties of Ni3Al, Acta Metall., 36, 493, 10.1016/0001-6160(88)90080-6
Wu, 2015, Nano-twin mediated plasticity in carbon-containing FeNiCoCrMn high entropy alloys, J. Alloys Compd., 647, 815, 10.1016/j.jallcom.2015.05.224
Bouaziz, 2011, Effect of chemical composition on work hardening of Fe−Mn−C twip steels, Mater. Sci. Technol., 27, 707, 10.1179/026708309X12535382371852
Traversier, 2021, Nitrogen-induced hardening in an austenitic CrFeMnNi high-entropy alloy (HEA), Mater. Sci. Eng. A, 804, 140725, 10.1016/j.msea.2020.140725
Reed, 1988, Low-temperature properties of high-manganese austenitic steels, Austenitic Steels, 13
Chen, 2018, Heavy carbon alloyed FCC-structured high entropy alloy with excellent combination of strength and ductility, Mater. Sci. Eng. A, 716, 150, 10.1016/j.msea.2018.01.045
Wu, 2014, In-situ neutron diffraction study of deformation behavior of a multi-component high-entropy alloy, Appl. Phys. Lett., 104, 10.1063/1.4863748
Smallman, 2013
Lu, 2015, An assessment on the future development of high-entropy alloys: summary from a recent workshop, Intermetallics, 66, 67, 10.1016/j.intermet.2015.06.021
Otto, 2013, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Mater., 61, 5743, 10.1016/j.actamat.2013.06.018
Taillard, 1989, Mechanisms of the action of N interstitials upon the low cycle fatigue behavior of 316 stainless steel. High N steels hns 88
Gavriljuk, 1999
Xiong, 2020, Influences of nitrogen alloying on microstructural evolution and tensile properties of cocrfemnni high-entropy alloy treated by cold-rolling and subsequent annealing, Mater. Sci. Eng. A, 787, 139472, 10.1016/j.msea.2020.139472
Wu, 2014, Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys, Intermetallics, 46, 131, 10.1016/j.intermet.2013.10.024
Gali, 2013, Tensile properties of high- and medium-entropy alloys, Intermetallics, 39, 74, 10.1016/j.intermet.2013.03.018
Deng, 2015, Design of a twinning-induced plasticity high entropy alloy, Acta Mater., 94, 124, 10.1016/j.actamat.2015.04.014
Miura, 1968, Orientation dependence of flow stress for twinning in silver crystals, Trans. Jpn. Inst. Metal S, 9, 555
Rao, 2020, A model for interstitial solid solution strengthening of body centered cubic metals, Materialia, 9, 100611, 10.1016/j.mtla.2020.100611
Suzuki, 1991, Solid-solution hardening in body-centered cubic alloys, 4
Suzuki, 1979, Solid solution hardening, vol. 3
Nakada, 1968, Solid solution strengthening in Fe−N single crystals, Acta Metall., 16, 903, 10.1016/0001-6160(68)90057-6