Interstitial strengthening in f.c.c. metals and alloys

Advanced Powder Materials - Tập 1 - Trang 100034 - 2022
Ian Baker1
1Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA

Tài liệu tham khảo

Fleischer, 1961, Solution hardening, Acta Metall., 9, 996, 10.1016/0001-6160(61)90242-5 Labusch, 1970, A statistical theory of solid solution hardening, Phys. Status Solidi, 41, 659, 10.1002/pssb.19700410221 Mott, 1948, Report on conference on the strength of solids, Physica, 1 Friedel, 1956, 205 Arsenault, 1989, Computer-simulation of solid-solution strengthening in FCC alloys .1. Friedel and Mott limits, Metall. Trans. A, 20, 1411, 10.1007/BF02665498 Honeycombe, 1975 Ardley, 2019, Yield points in brass crystals, Proc. Roy. Soc. Lond. Math. Phys. Sci., 1138, 328 Brindley, 1962, Yield points and luders bands in single crystals of copper-base alloys, Acta Metall., 10, 1043, 10.1016/0001-6160(62)90073-1 1986 Yamamoto, 1986, Effect of metallurgical variables on strength and toughness of Mn−Cr and Ni−Cr stainless steels at 4.2 K, 32, 57 Werner, 1988, Solid-solution and grain-size hardening of nitrogen-alloyed austenitic steels, Mater. Sci. Eng. A, 101, 93 Thomas, 1963, Effect of short-range order on stacking fault energy and dislocation arrangements in F.C.C. Solid solutions, Acta Metall., 11, 1369, 10.1016/0001-6160(63)90035-X Talha, 2015, Effect of nitrogen and cold working on structural and mechanical behavior of Ni-free nitrogen containing austenitic stainless steels for biomedical applications, Mater. Sci. Eng. C, 47, 196, 10.1016/j.msec.2014.10.078 Taillard, 1987, Effect of N Upon the low-cycle fatigue behaviour of 316 L stainless steels Stoltz, 1980, The effect of nitrogen on stacking-fault energy of Fe−Ni−Cr−Mn steels, Metall. Trans. A, 11, 1033, 10.1007/BF02654717 Simmons, 1996, Overview: high-nitrogen alloying of stainless steels, Mater. Sci. Eng. A, 207, 159, 10.1016/0921-5093(95)09991-3 Sassen, 1989, Electron microscopy of austenitic Fe−Ni−Cr alloys containing N, 159 Sandstrom, 1977, Temperature-dependence of tensile properties and strengthening of nitrogen alloyed austenitic stainless-steels, Scand. J. Metall., 6, 156 Sakamoto, 1984, N-containing 25Cr-13Ni stainless steel as a cryogenic structural material, Adv. Cryog. Eng. Mater., 30, 137, 10.1007/978-1-4613-9868-4_17 Reed, 1989, Nitrogen Strengthening of Austenitic Stainless Steels at Low Temperatures, 108 Reed, 1989, Nitrogen in austenitic stainless-steels, J. Miner. Met. Mater. Soc., 41, 16, 10.1007/BF03220991 Norstrom, 1977, Work-hardening mechanism in high-N austenitic stainless steel, Met. Sci., 11, 208 Masumura, 2020, Work-hardening mechanism in high-nitrogen austenitic stainless steel, Mater. Trans., 61, 678, 10.2320/matertrans.H-M2020804 Ledbetter, 1985, stacking fault energies in 304-type stainless steels: effects of interstitial C and N, 271 Irvine, 1969, Strength of austenitic stainless steels, J. Iron Steel Inst., 207, 1017 Irvine, 1961, High-strength austenitic stainless steels, Iron Steel Inst. Jpn., 199, 153 Grujicic, 1989, 151 Fujikura, 1978, Effects of C, N and nickel content on the low temperature impact value of high manganese austentic steel, J. Iron Steel Inst. Jpn., 64, 97 Byun, 2003, On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels, Acta Mater., 51, 3063, 10.1016/S1359-6454(03)00117-4 Byrnes, 1987, Nitrogen strengthening of a stable austenitic stainless-steel, Acta Metall., 35, 1853, 10.1016/0001-6160(87)90131-3 Boes, 2020, Microstructure and properties of high-strength C plus N austenitic stainless steel processed by laser powder bed fusion, Addit. Manuf., 32 Berns, 2008, Intensive interstitial strengthening of stainless steels, Adv. Eng. Mater., 10, 1083, 10.1002/adem.200800214 Yoo, 2008, Microband-induced plasticity in a high Mn−Al−C light steel, Mater. Sci. Eng. A, 496 Yen, 2012, Interactions between deformation-induced defects and carbides in a vanadium-containing TWIP steel, Scripta Mater., 66, 1018, 10.1016/j.scriptamat.2012.02.002 Yang, 2010 Scott, 2006, The development of a new Fe−Mn−C austenitic steel for automotive applications, Rev. Metall. Cah. D Inf. Tech., 103, 293 Neu, 2013, Performance and characterization of TWIP steels for automotive applications, Mater. Perform. Char., 2, 244 Kang, 2010, Effects of recrystallization annealing temperature on carbide precipitation, microstructure, and mechanical properties in Fe−18Mn−0.6C−1.5Al TWIP steel, Mater. Sci. Eng. A, 527, 745, 10.1016/j.msea.2009.08.048 Grassel, 1997, Phase transformations and mechanical properties of Fe−Mn−Si−Al TRIP-steels, J. Phys. IV, 7, 383 Frommeyer, 2003, Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes, ISIJ Int., 43, 438, 10.2355/isijinternational.43.438 Cooman, 2011, High Mn TWIP steels for automotive applications Ye, 2020, Effect of interstitial oxygen and nitrogen on incipient plasticity of NbTiZrHf high-entropy alloys, Acta Mater., 199, 413, 10.1016/j.actamat.2020.08.065 Xiong, 2020, Effects of nitrogen alloying and friction stir processing on the microstructures and mechanical properties of CoCrFeMnNi high-entropy alloys, J. Alloys Compd., 822, 10.1016/j.jallcom.2019.153512 Xiao, 2020, Effect of carbon content on microstructure, hardness and wear resistance of cocrfemnnicx high-entropy alloys, J. Alloys Compd., 847, 10.1016/j.jallcom.2020.156533 Wu, 2021, Short-range ordering and its effects on mechanical properties of high-entropy alloys, J. Mater. Sci. Technol., 62, 214, 10.1016/j.jmst.2020.06.018 Wei, 2018, Strengthening of Fe40mn40Co10Cr10 high entropy alloy via Mo/C alloying, Mater. Lett., 219, 85, 10.1016/j.matlet.2018.02.065 Wang, 2016, The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys, Acta Mater., 120, 228, 10.1016/j.actamat.2016.08.072 Stepanov, 2017, Effect of thermomechanical processing on microstructure and mechanical properties of the carbon-containing CoCrFeNiMn high entropy alloy, J. Alloys Compd., 693, 394, 10.1016/j.jallcom.2016.09.208 Song, 2019, N induced heterogeneous structures overcome strength-ductility trade-off in an additively manufactured high-entropy alloy, Appl. Mater. Today, 18, 100498, 10.1016/j.apmt.2019.100498 Song, 2020, Mechanical performance and microstructural evolution of (NiCo)75Cr17Fe8Cx (X = 0.83) medium entropy alloys at room and cryogenic temperatures, Metals, 10, 12, 10.3390/met10121646 Shang, 2019, Solving the strength-ductility tradeoff in the medium-entropy NiCoCr alloy via interstitial strengthening of carbon, Intermetallics, 106, 77, 10.1016/j.intermet.2018.12.009 Shang, 2020 Semenyuk, 2021, Effect of nitrogen on microstructure and mechanical properties of the CoCrFeMnNi high-entropy alloy after cold rolling and subsequent annealing, J. Alloys Compd., 888, 10.1016/j.jallcom.2021.161452 Ravi, 2021, Microstructural evolution and wear behavior of carbon added CoCrFeMnNi multi-component alloy fabricated by mechanical alloying and spark plasma sintering, J. Alloys Compd., 883, 10.1016/j.jallcom.2021.160879 Moravcik, 2020, Interstitial doping enhances the strength-ductility synergy in a CoCrNi medium entropy alloy, Mater. Sci. Eng. A, 781, 10.1016/j.msea.2020.139242 Moravcik, 2020, Yield strength increase of a CoCrNi medium entropy alloy by interstitial nitrogen doping at maintained ductility, Scripta Mater., 178, 391, 10.1016/j.scriptamat.2019.12.007 Moravcik, 2020, Interstitial N enhances corrosion resistance of an equiatomic CoCrNi medium-entropy alloy in sulfuric acid solution, Mater. Char., 172, 110869, 10.1016/j.matchar.2020.110869 Lu, 2021, Influence of C on the mechanical behavior and microstructure evolution of CoCrFeMnNi processed by high pressure torsion, Materialia, 16, 101059, 10.1016/j.mtla.2021.101059 Liu, 2020, Effect of C Addition on microstructure and mechanical properties of as-cast heas (Fe50Mn30Co10Cr10)100-XCX, Mater. Chem. Phys., 254, 10.1016/j.matchemphys.2020.123501 Liu, 2019, Solute segregation effect on grain boundary migration and Hall-petch relationship in CrMnFeCoNi high-entropy alloy, Mater. Sci. Technol., 35, 500 Li, 2019, Interstitial equiatomic cocrfemnni high-entropy alloys: carbon content, microstructure, and compositional homogeneity effects on deformation behavior, Acta Mater., 164, 400, 10.1016/j.actamat.2018.10.050 Klimova, 2019, Effect of carbon on cryogenic tensile behavior of CoCrFeMnNi-type high entropy alloys, J. Alloys Compd., 811, 10.1016/j.jallcom.2019.152000 Klimova, 2021, Effect of carbon on recrystallised microstructures and properties of CoCrFeMnNi-type high-entropy alloys, J. Alloys Compd., 851, 156839, 10.1016/j.jallcom.2020.156839 Klimova, 2020, Effect of nitrogen on mechanical properties of CoCrFeMnNi high entropy alloy at room and cryogenic temperatures, J. Alloys Compd., 849, 156633, 10.1016/j.jallcom.2020.156633 Kim, 2020, Nano-scale solute heterogeneities in the ultrastrong selectively laser melted carbon-doped CoCrFeMnNi alloy, Mater. Sci. Eng. A, 773, 138726, 10.1016/j.msea.2019.138726 Kies, 2020, Combined Al and C alloying enables mechanism-oriented design of multi-principal element alloys: ab initio calculations and experiments, Scripta Mater., 178, 366, 10.1016/j.scriptamat.2019.12.004 Jodi, 2020, Investigation on the precipitate formation and behavior in nitrogen-containing equiatomic CoCrFeMnNi high-entropy alloy, Mater. Lett., 258, 126806, 10.1016/j.matlet.2019.126806 He, 2021, Synergy effect of multi-strengthening mechanisms in FeMnCoCrN HEA at cryogenic temperature, J. Mater. Sci. Technol., 86, 158, 10.1016/j.jmst.2020.12.079 He, 2021, Multi-heterostructure and mechanical properties of N-doped FeMnCoCr high entropy alloy, Int. J. Plast., 139, 102965, 10.1016/j.ijplas.2021.102965 Han, 2021, Simultaneous enhancement in strength and ductility of Fe50Mn30Co10Cr10 high-entropy alloy via nitrogen alloying, J. Mater. Sci. Technol., 65, 210, 10.1016/j.jmst.2020.04.072 Han, 2020, Enhancing the strength and ductility of CoCrFeMnNi high-entropy alloy by nitrogen addition, Mater. Sci. Eng. A, 789, 139587, 10.1016/j.msea.2020.139587 Gan, 2021, Interstitial effects on the incipient plasticity and dislocation behavior of a metastable high-entropy alloy: nanoindentation experiments and statistical modeling, Acta Mater., 206, 116633, 10.1016/j.actamat.2021.116633 Chung, 2021, Strengthening and deformation mechanism of a Fe20Co20Cr20Mn20Ni20 high entropy alloy with high nitrogen content, J. Alloys Compd., 871, 159587, 10.1016/j.jallcom.2021.159587 Chen, 2021, Direct observation of chemical short-range order in a medium-entropy alloy, Nature, 592, 712, 10.1038/s41586-021-03428-z Chen, 2020, Gradient structure design to strengthen carbon interstitial Fe40Mn40Co10Cr10 high entropy alloys, Mater. Sci. Eng. A, 772, 138661, 10.1016/j.msea.2019.138661 Chen, 2018, Effect of C Content on microstructure and tensile properties of as-cast CoCrFeMnNi high entropy alloy, Mater. Chem. Phys., 210, 136, 10.1016/j.matchemphys.2017.08.011 Baker, 2020, Interstitials in F.C.C. high entropy alloys, Metals, 10, 695, 10.3390/met10050695 Astafurova, 2020, On the difference in carbon- and nitrogen-alloying of equiatomic FeMnCrNiCo high-entropy alloy, Mater. Lett., 276, 128183, 10.1016/j.matlet.2020.128183 Astafurova, 2021, The effect of nitrogen alloying on hydrogen-assisted plastic deformation and fracture in FeMnNiCoCr high-entropy alloys, Scripta Mater., 194, 113642, 10.1016/j.scriptamat.2020.113642 Astafurova, 2021, A comparative study of a solid solution hardening in carbon-alloyed FeMnCrNiCo0.95C0.05 high-entropy alloy subjected to different thermal- mechanical treatments, Mater. Lett., 285, 129073, 10.1016/j.matlet.2020.129073 Schulson, 1990, The strength and ductility of Ni3Si, Acta Metall. Mater., 38, 207, 10.1016/0956-7151(90)90050-Q Fang, 1992, The strength and ductility of Ni3Ge with and without boron, Mater. Sci. Eng. A, 152 Baker, 1988, The effect of boron on the lattice properties of Ni3Al, Acta Metall., 36, 493, 10.1016/0001-6160(88)90080-6 Wu, 2015, Nano-twin mediated plasticity in carbon-containing FeNiCoCrMn high entropy alloys, J. Alloys Compd., 647, 815, 10.1016/j.jallcom.2015.05.224 Bouaziz, 2011, Effect of chemical composition on work hardening of Fe−Mn−C twip steels, Mater. Sci. Technol., 27, 707, 10.1179/026708309X12535382371852 Traversier, 2021, Nitrogen-induced hardening in an austenitic CrFeMnNi high-entropy alloy (HEA), Mater. Sci. Eng. A, 804, 140725, 10.1016/j.msea.2020.140725 Reed, 1988, Low-temperature properties of high-manganese austenitic steels, Austenitic Steels, 13 Chen, 2018, Heavy carbon alloyed FCC-structured high entropy alloy with excellent combination of strength and ductility, Mater. Sci. Eng. A, 716, 150, 10.1016/j.msea.2018.01.045 Wu, 2014, In-situ neutron diffraction study of deformation behavior of a multi-component high-entropy alloy, Appl. Phys. Lett., 104, 10.1063/1.4863748 Smallman, 2013 Lu, 2015, An assessment on the future development of high-entropy alloys: summary from a recent workshop, Intermetallics, 66, 67, 10.1016/j.intermet.2015.06.021 Otto, 2013, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Mater., 61, 5743, 10.1016/j.actamat.2013.06.018 Taillard, 1989, Mechanisms of the action of N interstitials upon the low cycle fatigue behavior of 316 stainless steel. High N steels hns 88 Gavriljuk, 1999 Xiong, 2020, Influences of nitrogen alloying on microstructural evolution and tensile properties of cocrfemnni high-entropy alloy treated by cold-rolling and subsequent annealing, Mater. Sci. Eng. A, 787, 139472, 10.1016/j.msea.2020.139472 Wu, 2014, Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys, Intermetallics, 46, 131, 10.1016/j.intermet.2013.10.024 Gali, 2013, Tensile properties of high- and medium-entropy alloys, Intermetallics, 39, 74, 10.1016/j.intermet.2013.03.018 Deng, 2015, Design of a twinning-induced plasticity high entropy alloy, Acta Mater., 94, 124, 10.1016/j.actamat.2015.04.014 Miura, 1968, Orientation dependence of flow stress for twinning in silver crystals, Trans. Jpn. Inst. Metal S, 9, 555 Rao, 2020, A model for interstitial solid solution strengthening of body centered cubic metals, Materialia, 9, 100611, 10.1016/j.mtla.2020.100611 Suzuki, 1991, Solid-solution hardening in body-centered cubic alloys, 4 Suzuki, 1979, Solid solution hardening, vol. 3 Nakada, 1968, Solid solution strengthening in Fe−N single crystals, Acta Metall., 16, 903, 10.1016/0001-6160(68)90057-6