Cạnh Tranh Tài Nguyên Giữa Các Loài - Tác Động Kết Hợp Của Bức Xạ và Hạn Chế Dinh Dưỡng Đối Với Hai Loài Xyanobacteria Filamentous Diazotrophic

Microbial Ecology - Tập 63 - Trang 736-750 - 2011
Malin Mohlin1, Michael Y. Roleda1,2, Bagmi Pattanaik1, Stefanie-Joana Tenne1,3, Angela Wulff1
1Department of Marine Ecology, Marine Botany, University of Gothenburg, Göteborg, Sweden
2Department of Botany, University of Otago, Dunedin, New Zealand
3Department of Biotechnology, RWTH Aachen University, Aachen, Germany

Tóm tắt

Các vụ nở xyanobacteria trong biển Baltic chủ yếu bởi các xyanobacteria diazotrophic, bao gồm các loài có thể độc Aphanizomenon sp. và loài độc Nodularia spumigena. Sự kế thừa theo mùa với các đỉnh của Aphanizomenon sp., tiếp theo là các đỉnh của N. spumigena, đã được giải thích bởi các ngách sinh thái cụ thể của hai loài này. Trong một thí nghiệm ngoài trời ba yếu tố, chúng tôi đã kiểm tra xem điều kiện dinh dưỡng và bức xạ có thể ảnh hưởng tới phản ứng sinh lý và sinh hóa của N. spumigena và Aphanizomenon sp. trong sự hiện diện hoặc không có loài còn lại. Hai phương pháp dinh dưỡng là môi trường f/2 không có NO₃⁻ (−N) và môi trường f/2 không có PO₄³⁻ (−P), và hai phương pháp bức xạ ánh sáng là bức xạ quang hợp hoạt động >395 nm (PAR) và PAR + UV-A + UV-B >295 nm. Nghiên cứu cho thấy rằng Aphanizomenon sp. không bị ảnh hưởng tiêu cực bởi sự hiện diện của N. spumigena và rằng N. spumigena thích nghi tốt hơn với cả hai sự hạn chế N và P khi tương tác với bức xạ tử ngoại (UVR, 280–400 nm). Tại biển Baltic, những điều kiện vật lý này có thể tồn tại trong nước mặt vào mùa hè. Thú vị là, tỷ lệ tăng trưởng cụ thể của N. spumigena đã được kích thích bởi sự hiện diện của Aphanizomenon sp. Chúng tôi gợi ý rằng sự kế thừa theo mùa, với các đỉnh của Aphanizomenon sp. theo sau là các đỉnh của N. spumigena, là kết quả từ sở thích riêng của các loài về điều kiện môi trường và/hoặc kích thích từ Aphanizomenon sp. thay vì hiệu ứng allelopathic của N. spumigena. Kết quả từ nghiên cứu của chúng tôi, cộng với sự phân lớp mạnh hơn được dự đoán do các tác động của biến đổi khí hậu ở biển Baltic với nhiệt độ tăng và lượng mưa tăng cùng với tăng cường UV-B do mất ozone, phản ánh một kịch bản với sự thống trị tiếp tục của N. spumigena độc hại trong tương lai.

Từ khóa

#cyanobacteria #Baltic Sea #Aphanizomenon sp. #Nodularia spumigena #bức xạ #dinh dưỡng #cạnh tranh tài nguyên

Tài liệu tham khảo

Adams DG, Duggan PS (1999) Heterocyst and akinete differentiation in cyanobacteria. New Phytol 144:3–33 Andersson A, Hajdu S, Haecky P, Kuparinen J, Wikner J (1996) Succession and growth limitation of phytoplankton in the Gulf of Bothnia (Baltic Sea). Mar Biol 126:791–801 Baier K, Lehmann H, Stephan DP, Lockau W (2004) NblA is essential for phycobilisome degradation in Anabaena sp. strain PCC 7120 but not for development of functional heterocysts. Microbiology 150:2739–2749 Bennet A, Bogorad L (1973) Complementary chromatic adaptation in filamentous blue-green alga. J Cell Biol 58:419–435 Carreto JI, Carignan MO, Montoya NG (2005) A high-resolution reverse-phase liquid chromatography method for the analysis of mycosporine-like amino acids (MAAs) in marine organisms. Mar Biol 146:237–252 Collier JL, Grossmann AR (1992) Chlorosis induced by nutrient deprivation in Synechococcus sp. strain PCC 7942: not all bleaching is the same. J Bacteriol 174:4718–4726 Cox PA, Banack SA, Murch SJ, Rasmussen U, Tien G, Bidigare RR, Metcalf JS, Morrison LF, Codd GA, Bergman B (2005) Diverse taxa of cyanobacteria produce beta-N-methylamino-L-alanine, a neurotoxic amino acid. PNAS 102:5074–5078 Degerholm J, Gundersen K, Bergman B, Soderback E (2006) Phosphorus-limited growth dynamics in two Baltic Sea cyanobacteria, Nodularia sp. and Aphanizomenon sp. FEMS. Microbiol Ecol 58:323–332 Falkowski PG, LaRoche J (1991) Acclimation to spectral irradiance in algae. J Phycol 27:8–14 Flynn KJ (2002) How critical is the critical N:P ratio? J Phycol 38:961–970 Goldman JC, McCarthy JJ, Peavy DG (1979) Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279:210–215 Grasshoff K, Kremling K, Ehrhardt M (1999) Methods of seawater analysis, 3rd edn. Wiley-VCH, Weinheim Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum, New York, pp 29–60 Götz T, Windhövel U, Böger P, Sandman G (1999) Protection of photosynthesis against ultraviolet-B radiation by carotenoids in transformants of the cyanobacterium Synechococcus PCC7942. Plant Physiol 120:599–604 Hajdu S, Hoglander H, Larsson U (2007) Phytoplankton vertical distributions and composition in Baltic Sea cyanobacterial blooms. Harmful Algae 6:189–205 Healey FP, Hendzel LL (1975) Effect of phosphorus deficiency on 2 algae growing in chemostats. J Phycol 11:303–309 Helcom (2007) HELCOM thematic assessment of climate change in the Baltic Sea area. Balt Sea Env Proc no: 111 Hessen DO, Faerovig PJ, Andersen T (2002) Light, nutrients, and P:C ratios in algae: grazer performance related to food quality and quantity. Ecology 83:1886–1898 Humble A, Gadd GM, Codd GA (1994) Polygraphic analysis of the interaction between cyanobacterial microcystin (hepatotoxin) variants and metal cations. In: Tedioli G, Ventura S, Zannoni D (eds) VIII international symposium on phototrophic prokaryotes, pp 82 Ibelings BW, Havens KE (2008) Cyanobacterial toxins: a qualitative meta-analysis of concentrations, dosage and effects in freshwater, estuarine and marine biota. In: Hudnell HK (ed) Cyanobacterial harmful algal blooms: state of the science and research needs, vol 619. Springer, Berlin, pp 675–732 Jodlowska S, Latala A (2010) Photoacclimation strategies in the toxic cyanobacterium Nodularia spumigena (Nostocales, Cyanobacteria). Phycologia 49:203–211 Karentz D (2001) Chemical defenses of marine organisms against solar radiation exposure: UV-absorbing mycosporine-like amino acids and scytonemin. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC, Boca Raton, pp 481–520 Keating K (1977) Allelopathic influence on blue-green bloom sequence in a Eutrophic Lake. Science 196:885–887 Kononen K, Kuparinen J, Makela K, Laanemets J, Pavelson J, Nommann S (1996) Initiation of cyanobacterial blooms in a frontal region at the entrance to the Gulf of Finland, Baltic Sea. Limnol Oceanogr 41:98–112 Kononen K, Hallfors S, Kokkonen M, Kuosa H, Laanemets J, Pavelson J, Autio R (1998) Development of a subsurface chlorophyll maximum at the entrance to the Gulf of Finland, Baltic Sea. Limnol Oceanogr 43:1089–1106 Kromkamp J, Konopka A, Mur LR (1986) Buoyancy regulation in a strain of Aphanizomenon flos-aquae (Cyanophyceae): the importance of carbohydrate accumulation and gas vesicle collapse. J Gen Microbiol 132:2113–2121 Laamanen M, Kuosa H, Maximum S (2005) Annual variability of biomass and heterocysts of the N-2-fixing cyanobacterium Aphanizomenon flos-aquae in the Baltic Sea with reference to Anabaena spp. and Nodularia spumigena. Boreal Environ Res 10:19–30 Lagus A, Suomela J, Weitoff B, Heikella K, Helminen H, Sipura J (2004) Species-specific differences in phytoplankton responses to N and P enrichments and the N:P ratio in the Archipelago Sea, northern Baltic Sea. J Plankton Res 26:779–798 Latasa M, Berdalet E (1994) Effect of nitrogen or phosphorus starvation on pigment composition of cultured Heterocapsa sp. J Plankton Res 16:83–94 Legrand C, Rengefors K, Fistarol GO, Granéli E (2003) Allelopathy in phytoplankton—biochemical, ecological and evolutionary aspects. Phycologia 42:406–419 Lehtimäki J, Moisander P, Sivonen K, Kononen K (1997) Growth, nitrogen fixation, and nodularin production by two Baltic Sea cyanobacteria. Appl Environ Microbiol 63:1647–1656 Mazur-Marzec H, Zeglínska L, Plínski M (2005) The effect of salinity on the growth, toxin production, and morphology of Nodularia spumigena isolated from the Gulf of Gdánsk, southern Baltic Sea. J Appl Phycol 17:171–179 Mazur-Marzec H, Torunska A, Blonska MJ, Moskot M, Plinski M, Jakóbkiewicz-Banecka J, Wegrzyn G (2009) Biodegradation of nodularin and effects of the toxin on bacterial isolates from the Gulf of Gdansk. Water Res 43:2801–2810 Miśkiewicz E, Ivanov AG, Williams JP, Khan MU, Falk S, Huner NP (2000) Photosynthetic acclimation of the filamentous cyanobacterium, Plectonema boryanum UTEX 485, to temperature and light. Plant Cell Physiol 41:767–775 Mohlin M, Wulff A (2009) Interaction effects of ambient UV radiation and nutrient limitation on the toxic cyanobacterium Nodularia spumigena. Microbiol Ecol 57:675–686 Niemistö L, Rinne I, Melvasalo T, Niemi A (1989) Blue-green algae and their nitrogen fixation in the Baltic Sea in 1980, 1982 and 1984. Meri 17:3–59 Oliver RL, Walsby AE (1984) Direct evidence for the role of light-mediated gas vesicle collapse in the buoyancy regulation of Anabaena flos-aquae (cyanobacteria). Limnol Oceanogr 29:879–886 Oliver RL, Ganf GG (2000) Freshwater blooms. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Their diversity in time and space. Kluwer, Dordrecht, pp 149–194 Paasche E, Erga SR (1988) Phosphorus and nitrogen limitation of phytoplankton in the inner Oslofjord (Norway). Sarsia 73:229–243 Paerl HW (2000) Marine plankton. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Kluwer, Dordrecht, pp 121–148 Pattanaik B, Wulff A, Roleda MY, Garde K, Mohlin M (2010) Production of the cyanotoxin nodularin—a multifactorial approach. Harmful Algae 10:30–38 Ploug H, Musat N, Adam B, Moraru CL, Lavik G, Vagner T, Bergman B, Kuypers MMM (2010) Carbon and nitrogen fluxes associated with the cyanobacterium Aphanizomenon sp. in the Baltic Sea. ISME J 4:1215–1223 Ploug H, Adam B, Musat N, Kalvelage T, Lavik G, Wolf-Gladrow D, Kuypers MMM (2011) Carbon, nitrogen, and O2 fluxes associated with the cyanobacterium Nodularia spumigena in the Baltic Sea. ISME J 5:1549–1558 Poppe F (2003) Effects of UV radiation on the Antarctic red alga Palmaria decipiens. Ber Polarforsch Meeresforsch 467 Portwich A, Garcia-Pichel F (1999) Ultraviolet and osmotic stresses induce and regulate the synthesis of mycosporines in the cyanobacterium Chlorogloeopsis PCC6912. Arch Microbiol 172:187–192 Roleda MY, Mohlin M, Pattanaik B, Wulff A (2008) Photosynthetic response of Nodularia spumigena to UV and photosynthetically active radiation depends on nutrient (N and P) availability. FEMS Microbiol Ecol 66:230–242 Rosen BH, Lowe RC (1984) Physiological and ultrastructural responses of Cyclotella meneghiniania (Bacillariophyta) to light intensity and nutrient limitation. J Phycol 20:173–180 Rydin E, Hyenstrand P, Gunnerhed M, Blomquist P (2002) Nutrient limitation of cyanobacterial blooms: an enclosure experiment from the coastal zone of the NW Baltic proper. Mar Ecol Prog Ser 239:31–36 Sakshaug E, Andresen K, Myklestad S, Olsen Y (1983) Nutrient status of phytoplankton communities in Norwegian waters (marine, brackish, fresh) as revealed by their chemical composition. J Plankton Res 5:175–196 Schlüter L, Garde K, Kaas H (2004) Detection of the toxic cyanobacteria Nodularia spumigena by means of a 4-keto-myxoxanthophyll-like pigment in the Baltic Sea. Mar Ecol Prog Ser 275:69–78 Schlüter L, Lutnaes BF, Liaaen-Jensen S, Garde K, Kaas H, Jameson I, Blackburn S (2008) Correlation of the content of hepatotoxin nodularin and glycosidic carotenoids, 4-ketomyxol-2′-fucoside and novel 1′-O-methyl-4-ketomyxol-2′-fucoside, in 20 strains of the cyanobacterium Nodularia spumigena. Biochem System Ecol 36:749–757 Sellner KG (1997) Physiology, ecology, and toxic properties of marine cyanobacteria blooms. Limnol Oceanogr 42:1089–1104 Shindell DT, Rind D, Lonergan P (1998) Increased polar stratospheric ozone losses and delayed eventual recovery owing to increasing greenhouse-gas concentrations. Nature 392:589–592 Sinha RP, Ambasht NK, Sinha JP, Klisch M, Häder DP (2003) UV-B-induced synthesis of mycosporine-like amino acids in three strains of Nodularia (cyanobacteria). J Photochem Photobiol B 71:51–58 Smith VH (1983) Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221:669–671 Staehr PA, Henriksen P, Markager S (2002) Photoacclimation of four marine phytoplankton species to irradiance and nutrient availability. Mar Ecol Prog Ser 238:47–59 Stal LJ, Albertano P, Bergman B, Von Brockel K, Gallon LR, Hayes PK, Sivonen K, Walsby AE (2003) BASIC: Baltic Sea cyanobacteria. An investigation of the structure and dynamics of water blooms of cyanobacteria in the Baltic Sea—responses to a changing environment. Cont Shelf Res 23:1695–1714 Suikkanen S, Fistarol GO, Granéli E (2004) Allelopathic effects of the Baltic cyanobacteria Nodularia spumigena, Aphanizomenon flos-aquae and Anabaena lemmermannii on algal monocultures. J Exp Mar Biol Ecol 308:85–101 Suikkanen S, Fistarol GO, Granéli E (2005) Effects of cyanobacterial allelochemicals on a natural plankton community. Mar Ecol Prog Ser 287:1–9 Tilman D, Kilham SS, Kilham P (1982) Phytoplankton community ecology: the role of limiting nutrients. Annu Rev Ecol Syst 13:349–372 Turpin DH (1991) Effects of inorganic N availability on algal photosynthesis and carbon metabolism. J Phycol 27:14–20 Underwood AJ (1997) Experiments in ecology. Cambridge University Press, Cambridge Vahtera E, Laanemets J, Pavelson J, Huttunen M, Kononen K (2005) Effect of upwelling on the pelagic environment and bloom-forming cyanobacteria in the western Gulf of Finland, Baltic Sea. J Mar Syst 58:67–82 Vahtera E, Laamanen M, Rintala JM (2007) Use of different phosphorus sources by the bloom-forming cyanobacteria Aphanizomenon flos-aquae and Nodularia spumigena. Aquat Microb Ecol 46:225–237 Vintila S, El-Shehawy R (2010) Variability in the response of the cyanobacterium Nodularia spumigena to nitrogen supplementation. J Environ Monit 12:1885–1890 Wallström K, Johansson S, Larsson U (1992) Effect of nutrient enrichment on planktonic blue-green algae in the Baltic Sea. Acta Phytogeogr Suec 78:25–31 Walve J, Larsson U (2007) Blooms of Baltic Sea Aphanizomenon sp. (Cyanobacteria) collapse after internal phosphorus depletion. Aquat Microb Ecol 49:57–69 Wasmund N, Voss M, Lochte K (2001) Evidence of nitrogen fixation by non-heterocystous cyanobacteria in the Baltic Sea and re-calculation of a budget of nitrogen fixation. Mar Ecol Prog Ser 214:1–14 Wright S, Jeffrey S (1997) High-resolution HPLC system for chlorophylls and carotenoids of marine phytoplankton. In: Jeffrey SW, Mantoura RFC, Wright SW (eds) Phytoplankton pigments in oceanography. UNESCO, Paris, pp 327–341 Wright SW, Jeffrey SW, Mantoura RFC (1997) Evaluation of methods and solvents for pigment extraction. In: Jeffrey SW, Mantoura RFC, Wright SW (eds) Phytoplankton pigments in oceanography. UNESCO, Paris, pp 261–282 Wulff A, Mohlin M, Sundbäck K (2007) Intraspecific variation in the response of the cyanobacterium Nodularia spumigena to moderate UV-B radiation. Harmful Algae 6:388–399