Intersensory binding across space and time: A tutorial review

Lihan Chen1, Jean Vroomen2
1Department of Psychology and Key Laboratory of Machine Perception (Ministry of Education), Peking University, 100871, Beijing, China
2Department of Psychology, Tilburg University, P.O. Box 90153, 5000 LE Tilburg, The Netherlands

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alais, D., & Burr, D. (2004a). No direction-specific bimodal facilitation for audiovisual motion detection. Cognitive Brain Research, 19, 185–194.

Alais, D., & Burr, D. (2004b). The ventriloquist effect results from near-optimal bimodal integration. Current Biology, 14, 257–262.

Arrighi, R., Alais, D., & Burr, D. (2006). Perceptual synchrony of audiovisual streams for natural and artificial motion sequences. Journal of Vision, 6, 260–268.

Aschersleben, G., & Bertelson, P. (2003). Temporal ventriloquism: Crossmodal interaction on the time dimension. 2. Evidence from sensorimotor synchronization. International Journal of Psychophysiology, 50, 157–163.

Battaglia, P. W., Jacobs, R. A., & Aslin, R. N. (2003). Bayesian integration of visual and auditory signals for spatial localization. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 20, 1391–1397.

Bedford, F. L. (1989). Constraints on learning new mappings between perceptual dimensions. Journal of Experimental Psychology. Human Perception and Performance, 15, 232–248.

Benjamins, J. S., van der Smagt, M. J., & Verstraten, F. A. (2008). Matching auditory and visual signals: Is sensory modality just another feature? Perception, 37, 848–858.

Bell, A. H., Meredith, M. A., Van Opstal, A. J., & Munoz, D. P. (2005). Crossmodal integration in the primate superior colliculus underlying the preparation and initiation of saccadic eye movements. Journal of Neurophysiology, 93, 3659–3673.

Benevento, L. A., Fallon, J., Davis, B. J., & Rezak, M. (1977). Auditory-visual interaction in single cells in the cortex of the superior temporal sulcus and the orbital frontal cortex of the macaque monkey. Experimental Neurology, 57, 849–872.

Ben-Yishai, R., Bar-Or, R. L., & Sompolinsky, H. (1995). Theory of orientation tuning in visual cortex. Proceedings of the National Academy of Sciences, 92, 3844–3848.

Bertelson, P. (1998). Starting from the ventriloquist: The perception of multimodal events. In M. Sabourin, F. I. M. Craik, & M. Robert (Eds.), Advances in psychological science. Vol.2: Biological and cognitive aspects (pp. 419–439). Sussex: Psychology Press.

Bertelson, P. (1999). Ventriloquism: A case of cross-modal perceptual grouping. In G. Aschersleben, T. Bachmann, & J. Müsseler (Eds.), Cognitive contributions to the perception of spatial and temporal events (pp. 347–362). Amsterdam: Elsevier.

Bertelson, P., & Aschersleben, G. (1998). Automatic visual bias of perceived auditory location. Psychonomic Bulletin & Review, 5, 482–489.

Bertelson, P., & Aschersleben, G. (2003). Temporal ventriloquism: Crossmodal interaction on the time dimension. 1. Evidence from auditory-visual temporal order judgment. International Journal of Psychophysiology, 50, 147–155.

Bertelson, P., Frissen, I., Vroomen, J., & de Gelder, B. (2006). The aftereffects of ventriloquism: Patterns of spatial generalization. Perception & Psychophysics, 68, 428–436.

Bertelson, P., Pavani, F., Ladavas, E., Vroomen, J., & de Gelder, B. (2000a). Ventriloquism in patients with unilateral visual neglect. Neuropsychologia, 38, 1634–1642.

Bertelson, P., & Radeau, M. (1981). Cross-modal bias and perceptual fusion with auditory-visual spatial discordance. Perception & Psychophysics, 29, 578–584.

Bertelson, P., & Radeau, M. (1987). Adaptation to auditory–visual conflict: Have top-down influences been overestimated here also? Madrid: Paper presented at the 2nd meeting of the European Society for Cognitive Psychology.

Bertelson, P., Vroomen, J., de Gelder, B., & Driver, J. (2000b). The ventriloquist effect does not depend on the direction of deliberate visual attention. Perception & Psychophysics, 62, 321–332.

Bertelson, P., Vroomen, J., Wiegeraad, G., & de Gelder, B. (1994). Exploring the relation between McGurk interference and ventriloquism. Proceedings of the International Congress on Spoken Language Processing, 559–562.

Bertini, C., Leo, F., Avenanti, A., & Ladavas, E. (2010). Independent mechanisms for ventriloquism and multisensory integration as revealed by theta-burst stimulation. European Journal of Neuroscience, 31, 1791–1799.

Bien, N., ten Oever, S., Goebel, R., & Sack, A. T. (2012). The sound of size crossmodal binding in pitch-size synesthesia: A combined TMS, EEG and psychophysics study. NeuroImage, 59, 663–672.

Blakemore, S. J., Bristow, D., Bird, G., Frith, C., & Ward, J. (2005). Somatosensory activations during the observation of touch and a case of vision-touch synaesthesia. Brain, 128, 1571–1583.

Bonath, B., Noesselt, T., Martinez, A., Mishra, J., Schwiecker, K., Heinze, H. J., & Hillyard, S. A. (2007). Neural basis of the ventriloquist illusion. Current Biology, 17, 1697–1703.

Borjon, J. I., Shepherd, S. V., Todorov, A., & Ghazanfar, A. A. (2011). Eye-gaze and arrow cues influence elementary sound perception. Proceedings of the Royal Society. B:Biological Sciences, 278, 1997–2004.

Brancazio, L., & Miller, J. L. (2005). Use of visual information in speech perception: Evidence for a visual rate effect both with and without a McGurk effect. Perception & Psychophysics, 67, 759–769.

Bresciani, J. P., & Ernst, M. O. (2007). Signal reliability modulates auditory-tactile integration for event counting. Neuroreport, 18, 1157–1161.

Bruce, C., Desimone, R., & Gross, C. G. (1981). Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. Journal of Neurophysiology, 46, 369–384.

Bruns, P., & Getzmann, S. (2008). Audiovisual influences on the perception of visual apparent motion: Exploring the effect of a single sound. Acta Psychologica, 129, 273–283.

Bruns, P., Liebnau, R., & Röder, B. (2011a). Cross-modal training induces changes in spatial representations early in the auditory processing pathway. Psychological Science, 22, 1120–1126.

Bruns, P., & Röder, B. (2010a). Tactile capture of auditory localization: An event related potential study. European Journal of Neuroscience, 31, 1844–1857.

Bruns, P., & Röder, B. (2010b). Tactile capture of auditory localization is modulated by hand posture. Experimental Psychology, 57, 267–274.

Bruns, P., Spence, C., & Röder, B. (2011b). Tactile recalibration of auditory spatial representations. Experimental Brain Research, 209, 333–344.

Bruns, P., & Röder, B. (2012). Frequency specificity of the ventriloquism aftereffect revisited. Poster presented at 4th International Conference on Auditory Cortex. August 31st – September 3rd, 2012 in Lausanne, Switzerland

Burr, D., & Alais, D. (2006). Combining visual and auditory information. Progress in Brain Research, 155, 243–258.

Burr, D., Banks, M. S., & Morrone, M. C. (2009). Auditory dominance over vision in the perception of interval duration. Experimental Brain Research, 198, 49–57.

Caclin, A., Soto-Faraco, S., Kingstone, A., & Spence, C. (2002). Tactile “capture” of audition. Perception & Psychophysics, 64, 616–630.

Cai, M. A., Stetson, C., & Eagleman, D. M. (2012). A neural model for temporal order judgments and their active recalibration: A common mechanism for space and time? Frontiers in Psychology, 3, 470.

Calvert, G. A., Spence, C., & Stein, B. E. (2004). The Handbook of multisensory processes. Cambridge: MIT Press.

Canon, L. K. (1970). Intermodality inconsistency of input and directed attention as determinants of the nature of adaptation. Journal of Experimental Psychology, 84, 141–147.

Carles, E. (2007). The mismatch negativity 30 years later: How far have we come? Journal of Psychophysiology, 21, 129–132.

Chen, L., Shi, Z., & Müller, H. J. (2010). Influences of intra- and crossmodal grouping on visual and tactile Ternus apparent motion. Brain Research, 1354, 152–162.

Chen, L., Shi, Z., & Müller, H. J. (2011). Interaction of Perceptual Grouping and Crossmodal Temporal Capture in Tactile Apparent-Motion. PLoS One, 6(2), e17130.

Chen, L., & Zhou, X. (2011). Capture of intermodal visual/tactile apparent motion by moving and static sounds. Seeing and Perceiving, 24, 369–389.

Cohen, Y. E., Russ, B. E., & Gifford, G. W., III. (2005). Auditory processing in the posterior parietal cortex. Behavioral and Cognitive Neuroscience Reviews, 4, 218–231.

Colin, C., Radeau, M., Soquet, A., Dachy, B., & Deltenre, P. (2002). Electrophysiology of spatial scene analysis: The mismatch negativity (MMN) is sensitive to the ventriloquism illusion. Clinical Neurophysiology, 113, 507–518.

Colonius, H., & Diederich, A. (2004). Multisensory interaction in saccadic reaction time: A time-window-of-integration model. Journal of Cognitive Neuroscience, 16, 1000–1009.

Corneil, B. D., Van Wanrooij, M., Munoz, D. P., & Van Opstal, A. J. (2002). Auditory-visual interactions subserving goal-directed saccades in a complex scene. Journal of Neurophysiology, 88, 438–454.

Cusick, C. G. (1997). The superior temporal polysensory region in monkeys. Cerebral Cortex, 12, 435–468.

Deneve, S., Latham, P. E., & Pouget, A. (2001). Efficient computation and cue integration with noisy population codes. Nature Neuroscience, 4, 826–831.

Di Luca, M., Machulla, T., & Ernst, M. O. (2009). Recalibration of multisensory simultaneity: Cross-modal transfer coincides with a change in perceptual latency. Journal of Vision, 9, 1–16.

Dionne, J. K., Meehan, S. K., Legon, W., & Staines, W. R. (2010). Crossmodal influences in somatosensory cortex: Interaction of vision and touch. Human Brain Mapping, 31, 14–25.

Dixon, N. F., & Spitz, L. (1980). The detection of auditory visual desynchrony. Perception, 9, 719–721.

Dolscheid, S., Shayan, S., Majid, A., & Casasanto, D. (2011). The thickness of musical pitch: Psychophysical evidence for the Whorfian hypothesis. Proceedings of the 33rd Annual Conference of the Cognitive Science Society, 537–542.

Driver, J. (1996). Enhancement of selective listening by illusory mislocation of speech due to lip-reading. Nature, 381, 66–68.

Driver, J., & Spence, C. (1998). Attention and the crossmodal construction of space. Trends in Cognitive Sciences, 2, 254–262.

Eramudugolla, R., Kamke, M. R., Soto-Faraco, S., & Mattingley, J. B. (2011). Perception load influences auditory space perception in the ventriloquist aftereffect. Cognition, 118, 62–74.

Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415, 429–433.

Evans, K. K., & Treisman, A. (2010). Natural cross-modal mappings between visual and auditory features. Journal of Vision, 10, 1–12.

Fairhall, S. L., & Macaluso, E. (2009). Spatial attention can modulate audiovisual integration at multiple cortical and subcortical sites. European Journal of Neuroscience, 29, 1247–1257.

Fendrich, R., & Corballis, P. M. (2001). The temporal cross-capture of audition and vision. Perception & Psychophysics, 63, 719–725.

Forster, B., & Eimer, M. (2005). Vision and gaze direction modulate tactile processing in somatosensory cortex: Evidence from event-related brain potentials. Experimental Brain Research, 165, 8–18.

Freeman, E., & Driver, J. (2008). Direction of visual apparent motion driven solely by timing of a static sound. Current Biology, 18, 1262–1266.

Frissen, I., Vroomen, J., de Gelder, B., & Bertelson, P. (2003). The aftereffects of ventriloquism: Are they sound-frequency specific? Acta Psychologica, 113, 315–327.

Frissen, I., Vroomen, J., de Gelder, B., & Bertelson, P. (2005). The aftereffects of ventriloquism: Generalization across sound-frequencies. Acta Psychologica, 118, 93–100.

Frissen, I., Vroomen, J., & de Gelder, B. (2012). The aftereffects of ventriloquism: The time course of the visual recalibration of auditory localization. Seeing and Perceiving, 25, 1–14.

Fujisaki, W., Shimojo, S., Kashino, M., & Nishida, S. (2004). Recalibration of audiovisual simultaneity. Nature Neuroscience, 7, 773–778.

Fujisaki, W., & Nishida, S. (2005). Temporal frequency characteristic of synchrony-asynchrony discrimination of audiovisual signals. Experimental Brain Research, 166, 455–464.

Fujisaki, W., & Nishida, S. (2007). Feature-based processing of audio-visual synchrony perception revealed by random pulse trains. Vision Research, 47, 1075–1093.

Fujisaki, W., & Nishida, S. (2008). Top-down feature-based selection of matching features for audio-visual synchrony discrimination. Neuroscience Letters, 433, 255–230.

Fujisaki, W., & Nishida, S. (2010). A common perceptual temporal limit of binding synchronous inputs across different sensory attributes and modalities. Proceedings of the Royal Society B: Biological Sciences, 277, 2281–2290.

Gallace, A., & Spence, C. (2006). Multisensory synesthetic interactions in the speeded classification of visual size. Perception & Psychophysics, 68, 1191–1203.

Gebhard, J. W., & Mowbray, G. H. (1959). On discriminating the rate of visual flicker and auditory flutter. The American Journal of Psychology, 72, 521–529.

Georgopoulos, A. P., Taira, M., & Lukashin, A. (1993). Cognitive neurophysiology of the motor cortex. Science, 260, 47–52.

Getzmann, S. (2007). The effect of brief auditory stimuli on visual apparent motion. Perception, 36, 1089–1103.

Ghazanfar, A. A., & Schroeder, C. E. (2006). Is neocortex essentially multisensory? Trends in Cognitive Sciences, 10, 278–285.

Godfroy, M., Roumes, C., & Dauchy, P. (2003). Spatial variations of visual-auditory fusion areas. Perception, 32, 1233–1245.

Guzman-Martinez, E., Ortega, L., Grabowecky, M., Mossbridge, J., & Suzuki, S. (2012). Interactive coding of visual shape frequency and auditory amplitude-modulation rate. Current Biology, 22, 383–388.

Hairston, W. D., Wallace, M. T., Vaughan, J. W., Stein, B. E., Norris, J. L., & Schirillo, J. A. (2003). Visual localization ability influences cross-modal bias. Journal of Cognitive Neuroscience, 15, 20–29.

Hartcher-O'Brien, J., & Alais, D. (2011). Temporal ventriloquism in a purely temporal context. Journal of Experimental Psychology. Human Perception and Performance, 37, 1383–1395.

Held, R. (1965). Plasticity in sensory-motor systems. Scientific American, 213, 84–94.

Heron, J., Roach, N. W., Hanson, J. V. M., McGraw, P. V., & Whitaker, D. (2012). Audiovisual time perception is spatially specific. Experimental Brain Research, 218, 477–485.

Heron, J., Roach, N. W., Whitaker, D., & Hanson, J. V. M. (2010). Attention regulates the plasticity of multisensory timing. European Journal of Neuroscience, 31, 1755–1762.

Hidaka, S., Manaka, Y., Teramoto, W., Sugita, Y., Miyauchi, R., Gyoba, J., ... Iwaya, Y. (2009). Alternation of Sound Location Induces Visual Motion Perception of a Static Object. PLoS One, 4(12), e8188.

Howard, I. P., & Templeton, W. B. (1966). Human spatial orientation. New York.: Wiley.

Hubbard, T. L. (1996). Synesthesia-like mappings of lightness, pitch, and melodic interval. The American Journal of Psychology, 109, 219–238.

Jackson, C. V. (1953). Visual factors in auditory localization. Quarterly Journal of Experimental Psychology, 5, 52–65.

Jaekl, P. M., & Harris, L. R. (2007). Auditory-visual temporal integration measured by shifts in perceived temporal location. Neuroscience Letters, 417, 219–224.

Kacelnik, O., Walton, M. E., Parsons, C. H., & King, A. J. (2002). Visual-auditory interactions in sound localization: From behavior to neural substrate. Proceedings of the Neural Control of Movement Satellite Meeting, 21

Kafaligonul, H., & Stoner, G. R. (2010). Auditory modulation of visual apparent motion with short spatial and temporal intervals. Journal of Vision, 10, 1–13.

Kitajima, N., & Yamashita, Y. (1999). Dynamic capture of sound motion by light stimuli moving in three-dimensional space. Perceptual and Motor Skills, 89, 1139–1158.

Keetels, M., Stekelenburg, J., & Vroomen, J. (2007). Auditory grouping occurs prior to intersensory pairing: Evidence from temporal ventriloquism. Experimental Brain Research, 180, 449–456.

Keetels, M., & Vroomen, J. (2008a). Tactile-visual temporal ventriloquism: No effect of spatial disparity. Perception & Psychophysics, 70, 765–771.

Keetels, M., & Vroomen, J. (2008b). Temporal recalibration to tactile-visual asynchronous stimuli. Neuroscience Letters, 430, 130–134.

Keetels, M., & Vroomen, J. (2012). Exposure to delayed visual feedback of the hand changes motor-sensory synchrony perception. Experimental Brain Research, 219, 431–440.

King, A. J., Doubell, T. P., & Skaliora, I. (2004). Epigenetic factors that align visual and auditory maps in the ferret midbrain. In G. Calvert, C. Spence, & B. Stein (Eds.), Handbook of multisensory processes, (pp. 599–612). MIT Press: Cambridge.

Kitagawa, N., & Ichihara, S. (2002). Hearing visual motion in depth. Nature, 416, 172–174.

Knudsen, E. I., Knudsen, P. F., & Esterly, S. D. (1982). Early auditory experience modifies sound localization in barn owls. Nature, 295, 238–240.

Knudsen, E. I., & Knudsen, P. F. (1985). Vision Guides the adjustment of auditory localization in young barn owls. Science, 230, 545–548.

Knudsen, E. I., & Knudsen, P. F. (1989). Vision calibrates sound localization in developing barn owls. Journal of Neuroscience, 9, 3306–3313.

Kohlrausch, A., & van de Par, S. (2005). Audio–visual interaction in the context of multi-media applications. In J. Blauert (Ed.), Communication acoustics (pp. 109–138). Berlin: Springer.

Kopco, N., Lin, I. F., Shinn-Cunningham, B. G., & Groh, J. M. (2009). Reference frame of the ventriloquism aftereffect. The Journal of Neuroscience, 29, 13809–13814.

Körding, K. P., Beierholm, U., Ma, W. J., Quartz, S., Tenenbaum, J. B., & Shams, L. (2007). Causal inference in multisensory perception. PLoS One, 2(9), e943.

Levitin, D. J., MacLean, K., Matthews, M., Chu, L., & Jensen, E. (2000). The perception of cross-modal simultaneity (Or “The Greenwich observatory problem”revisited). In D. M. Dubois (Ed.) Computing Anticipatory Systems: CASYS’99. Third International Conference (CP517, pp. 323–329).

Lewald, J. (2002). Rapid adaptation to auditory-visual spatial disparity. Learning & Memory, 9, 268–278.

Lewald, J., & Guski, R. (2003). Cross-modal perceptual integration of spatially and temporally disparate auditory and visual stimuli. Cognitive Brain Research, 16, 468–478.

Ley, I., Haggard, P., & Yarrow, K. (2009). Optimal integration of auditory and vibrotactile information for judgments of temporal order. Journal of Experimental Psychology. Human Perception and Performance, 35, 1005–1019.

Ma, W. J., & Pouget, A. (2008). Linking neurons to behavior in multisensory perception: A computational review. Brain Research, 1242, 4–12.

Machulla, T. K., Di Luca, M., Froehlich, E., & Ernst, M. O. (2012). Multisensory simultaneity recalibration: Storage of the aftereffect in the absence of counterevidence. Experimental Brain Research, 217, 89–97.

Magosso, E., Cuppini, C., & Ursino, M. (2012). A neural network model of ventriloquism effect and aftereffect. PLoS One, 7(8), e42503.

Maiworm, M., Bellantoni, M., Spence, C., & Röder, B. (2012). When emotional valence modulates audiovisual integration. Attention, Perception, & Psychophysics, 74, 1302–1311.

Makovac, E., & Gerbino, W. (2010). Sound-shape congruency affects the multisensory response enhancement. Visual Cognition, 18, 133–137.

Martuzzi, R., Murray, M. M., Michel, C. M., Thiran, J. P., Maeder, P. P., Clarke, S., & Meuli, R. A. (2007). Multisensory interactions within human primary cortices revealed by BOLD dynamics. Cerebral Cortex, 17, 1672–1679.

Mateeff, S., Hohnsbein, J., & Noack, T. (1985). Dynamic visual capture: Apparent auditory motion induced by a moving visual target. Perception, 14, 721–727.

Mazzoni, P., Bracewell, R. M., Barash, S., & Andersen, R. A. (1996). Spatially tuned auditory responses in area LIP of macaques performing delayed memory saccades to acoustic targets. Journal of Neurophysiology, 75, 1233–1241.

McGurk, H., & MacDonald, J. (1976). Hearing lips and seeing voices. Nature, 264, 746–748.

Meredith, M. A., & Stein, B. E. (1983). Interactions among converging sensory inputs in the superior colliculus. Science, 221, 389–391.

Meredith, M. A., Nemitz, J. W., & Stein, B. E. (1987). Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors. The Journal of Neuroscience, 7, 3215–3229.

Meredith, M. A., & Allman, B. L. (2009). Subthreshold multisensory processing in cat auditory cortex. Neuroreport, 20, 126–131.

Meyer, G. F., & Wuerger, S. M. (2001). Cross-modal integration of auditory and visual motion signals. Neuroreport, 12, 2557–2560.

Miyazaki, M., Yamamoto, S., Uchida, S., & Kitazawa, S. (2006). Bayesian calibration of simultaneity in tactile temporal order judgment. Nature Neuroscience, 9, 875–877.

Morein-Zamir, S., Soto-Faraco, S., & Kingstone, A. (2003). Auditory capture of vision: Examining temporal ventriloquism. Cognitive Brain Research, 17, 154–163.

Munhall, K. G., Gribble, P., Sacco, L., & Ward, M. (1996). Temporal constraints on the McGurk effect. Perception & Psychophysics, 58, 351–362.

Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology, 118, 2544–2590.

Navarra, J., Hartcher-O’Brien, J., Piazza, E., & Spence, C. (2009). Adaptation to audiovisual asynchrony modulates the speeded detection of sound. Proceedings of the National Academy of Sciences of the United States of America, 106, 9169–9173.

Navarra, J., García-Morera, J., & Spence, C. (2012). Temporal adaptation to audiovisual asynchrony generalizes across different sound frequencies. Frontiers in Psychology, 3(152), 1–7.

Occelli, V., Bruns, P., Zampini, M., & Röder, B. (2012). Audiotactile integration is reduced in congenital blindness in a spatial ventriloquism task. Neuropsychologia, 50, 36–43.

Parise, C. V., & Spence, C. (2008). Synesthetic congruency modulates the temporal ventriloquism effect. Neuroscience Letters, 442, 257–261.

Parise, C. V., & Spence, C. (2009). 'When birds of a feather flock together': Synesthetic correspondences modulate audiovisual integration in non-synesthetes. PLoS One, 4(5), e5664.

Parise, C. V., & Spence, C. (2012). Audiovisual crossmodal correspondences and sound symbolism : A study using the implicit association test. Experimental Brain Research, 220, 319–333.

Poggio, T. (1990). A theory of how the brain might work. Cold Spring Habor Symposia on Quantitative Biology, 55, 899–910.

Pouget, A., & Sejnowski, T. (1994). A neural model of the cortical representation of egocentric distance. Cerebral Cortex, 4, 314–329.

Pouget, A., & Sejnowski, T. (1997). Spatial transformations in the parietal cortex using basis functions. Journal of Cognitive Neuroscience, 9, 222–237.

Pouget, A., Deneve, S., & Duhamel, J. R. (2002). A computational perspective on the neural basis of multisensory spatial representations. Nature Reviews Neuroscience, 3, 741–747.

Radeau, M. (1973). The locus of adaptation to auditory–visual conflict. Perception, 2, 327–332.

Radeau, M. (1992). Cognitive impenetrability in auditory–visual interaction. In J. Alegria, D. Holender, J. Morais, & M. Radeau (Eds.), Analytic approaches to human cognition (pp. 41–55). Amsterdam: Elsevier.

Radeau, M. (1994a). Auditory-visual interaction and modularity. Current Psychology of Cognition., 13, 3–51.

Radeau, M. (1994b). Ventriloquism against audio-visual speech: Or, where Japanese-speaking barn owls might help. Current Psychology of Cognition, 13, 124–140.

Radeau, M., & Bertelson, P. (1969). Adaptation à un déplacement prismatique sur la base de stimulations exafférentes en conflit. Psychologica Belgica, 9, 133–140.

Radeau, M., & Bertelson, P. (1974). The after-effects of ventriloquism. Quarterly Journal of Experimental Psychology, 26, 63–71.

Radeau, M., & Bertelson, P. (1976). The effect of a textured visual field on modality dominance in a ventriloquism situation. Perception & Psychophysics, 20, 227–235.

Radeau, M., & Bertelson, P. (1977). Adaptation to auditory-visual discordance and ventriloquism in semirealistic situations. Perception & Psychophysics, 22, 137–146.

Radeau, M., & Bertelson, P. (1978). Cognitive factors and adaptation to auditory-visual discordance. Perception & Psychophysics, 23, 341–343.

Radeau, M., & Bertelson, P. (1987). Auditory–visual interaction and the timing of inputs: Thomas (1941) revisited. Psychological Research, 49, 17–22.

Recanzone, G. H. (1998). Rapidly induced auditory plasticity: The ventriloquism aftereffect. Proceedings of the National Academy of Sciences, 95, 869–875.

Recanzone, G. H. (2003). Auditory influences on visual temporal rate perception. Journal of Neurophysiology, 89, 1078–1093.

Recanzone, G. H. (2009). Interactions of auditory and visual stimuli in space and time. Hearing Research, 258, 89–99.

Recanzone, G. H., & Sutter, M. L. (2008). The biological basis of audition. Annual Review of Psychology, 59, 119–142.

Redding, G. M., & Wallace, B. (1997). Adaptive spatial alignment. Hillsdale: Lawrence Erlbaum.

Repp, B. H. (2005). Sensorimotor synchronization: A review of the tapping literature. Psychonomic Bulletin & Review, 12, 969–992.

Repp, B. H., & Penel, A. (2002). Auditory dominance in temporal processing: New evidence from synchronization with simultaneous visual and auditory sequences. Journal of Experimental Psychology. Human Perception and Performance, 28, 1085–1099.

Roach, N. W., Heron, J., Whitaker, D., & McGraw, P. V. (2011). Asynchrony adaptation reveals neural population code for audio-visual timing. Proceedings of the Royal Society B: Biological Sciences, 278, 1314–1322.

Rock, I., & Victor, J. (1964). Vision and Touch: An experimentally created conflict between the two senses. Science, 143, 594–596.

Rolls, E. T., & Deco, G. (2002). Computational neuroscience of vision. Oxford: Oxford University Press.

Röder, B., & Büchel, C. (2009). Multisensory interactions within and outside the focus of visual spatial attention (commentary on Fairhall & Macaluso). European Journal of Neuroscience, 29, 1245–1246.

Roseboom, W., & Arnold, D. H. (2011). Twice Upon a Time: Multiple concurrent temporal recalibration of audiovisual speech. Psychological Science, 22, 872–877.

Russo, G. S., & Bruce, C. J. (1994). Frontal eye field activity preceding aurally guided saccades. Journal of Neurophysiology, 71, 1250–1253.

Sadaghiani, S., Maier, J. X., & Noppeney, U. (2009). Natural, metaphoric, and linguistic auditory direction signals have distinct influences on visual motion processing. Journal of Neuroscience, 29, 6490–6499.

Sanabria, D., Spence, C., & Soto-Faraco, S. (2007a). Perceptual and decisional contributions to audiovisual interactions in the perception of apparent motion: A signal detection study. Cognition, 102, 299–310.

Sanabria, D., Soto-Faraco, S., & Spence, C. (2007b). Spatial attention and audiovisual interactions in apparent motion. Journal of Experimental Psychology. Human Perception and Performance, 33, 927–937.

Sato, Y., & Aihara, K. (2009). Integrative Bayesian model on two opposite types of sensory adaptation. Artificial life and Robotics, 14, 289–292.

Sato, Y., Toyoizumi, T., & Aihara, K. (2007). Bayesian inference explains perception of unity and ventriloquism aftereffect: Identification of common sources of audiovisual stimuli. Neural Computation, 19, 3335–3355.

Sato, Y., & Aihara, K. (2011). A Bayesian Model of Sensory Adaptation. PLoS One, 6(4), e19377.

Scheier, C. R., Nijhawan, R., & Shimojo, S. (1999). Sound alters visual temporal resolution. \Investigative Ophthalmology & Visual Science, 40, 4169.

Schroeder, C. E., & Foxe, J. (2005). Multisensory contributions to low-level, ‘unisensory’ processing. Current Opinion in Neurobiology, 15, 454–458.

Sekuler, R., Sekuler, A. B., & Lau, R. (1997). Sound alters visual motion perception. Nature, 385, 308.

Serino, A., Farnè, A., Rinaldesi, M. L., Haggard, P., & Làdavas, E. (2007). Can vision of the body ameliorate impaired somatosensory function? Neuropsychologia, 45, 1101–1107.

Shams, L., & Beierholm, U. R. (2010). Causal inference in perception. Trends in Cogntive Sciences, 14, 425–432.

Shams, L., Kamitani, Y., & Shimojo, S. (2000). Illusion: What you see is what you hear. Nature, 408, 788.

Shi, Z., Chen, L., & Müller, H. J. (2010). Auditory temporal modulation of the visual Ternus effect: The influence of time interval. Experimental Brain Research, 203, 723–735.

Shipley, T. (1964). Auditory Flutter-Driving of Visual Flicker. Science, 145, 1328–1330.

Slutsky, D. A., & Recanzone, G. H. (2001). Temporal and spatial dependency of the ventriloquism effect. Neuroreport, 12, 7–10.

Soto-Faraco, S., Lyons, J., Gazzaniga, M., Spence, C., & Kingstone, A. (2002). The ventriloquist in motion: Illusory capture of dynamic information across sensory modalities. Cognitive Brain Research, 4, 139–146.

Soto-Faraco, S., Spence, C., & Kingstone, A. (2004a). Congruency effects between auditory and tactile motion: Extending the phenomenon of cross-modal dynamic capture. Cognitive, Affective, & Behavioral Neuroscience, 4, 208–217.

Soto-Faraco, S., Spence, C., & Kingstone, A. (2004b). Cross-modal dynamic capture: congruency effects in the perception of motion across sensory modalities. Journal of Experimental Psychology. Human Perception and Performance, 30, 330–345.

Soto-Faraco, S., Spence, C., & Kingstone, A. (2005). Assessing automaticity in the audiovisual integration of motion. Acta Psychologica, 118, 71–92.

Spence, C. (2011). Crossmodal correspondences: a tutorial review. Attention, Percepiton & Psychophysics, 73, 971–995.

Stein, B. E. (2012). The new handbook of multisensory Processes. Cambridge: MIT Press.

Stein, B. E., & Meredith, M. A. (1993). The merging of the senses. Cambridge: MIT Press.

Stein, B. E., & Stanford, T. R. (2008). Multisensory integration: current issues from the perspective of the single neuron. Nature Reviews Neuroscience, 9, 255–266.

Stekelenburg, J. J., Vroomen, J., & de Gelder, B. (2004). Illusory sound shifts induced by the ventriloquist illusion evoke the mismatch negativity. Neuroscience Letters, 357, 163–166.

Stekelenburg, J. J., Sugano, Y., & Vroomen, J. (2011). Neural correlates of motor-sensory temporal recalibration. Brain Research, 1397, 46–54.

Stekelenburg, J. J., & Vroomen, J. (2009). Neural correlates of audiovisual motion capture. Experimental Brain Research, 198, 383–390.

Stetson, C., Cui, X., Montague, R. R., & Eagleman, D. M. (2006). Motor-Sensory Recalibration leads to an illusory reversal of action and sensation. Neuron, 51, 651–659.

Strelnikov, K., Rosito, M., & Barone, P. (2011). Effect of audiovisual training on monaural spatial hearing in horizontal plane. PLoS One, 6(3), e18344.

Stricanne, B., Andersen, R. A., & Mazzoni, P. (1996). Eye-centered, head-centered and intermediate coding of remembered sound locations in area LIP. Journal of Neurophysiology, 76, 2071–2076.

Sugano, Y., Keetels, M., & Vroomen, J. (2010). Adaptation to motor-visual and motor-auditory temporal lags transfer across modalities. Experimental Brain Research, 201, 393–399.

Sugano, Y., Keetels, M., & Vroomen, J. (2012). The build-up and transfer of sensorimotor temporal recalibration measured via a synchronization task. Frontiers in Psychology, 3, 246.

Sweeny, T. D., Guzman-Martinez, E., Ortega, L., Grabowecky, M., & Suzuki, S. (2012). Sounds exaggerate visual shape. Cognition, 124, 194–200.

Takahashi, K., Saiki, J., & Watanabe, K. (2008). Realignment of temporal simultaneity between vision and touch. Neuroreport, 19, 319–322.

Talsma, D., Senkowski, D., Soto-Faraco, S., & Woldorff, M. G. (2010). The multifaceted interplay between attention and multisensory integration. Trends in Cognitive Sciences, 14, 400–410.

Taylor-Clarke, M., Kennett, S., & Haggard, P. (2002). Vision modulates somatosensory cortical processing. Current Biology, 12, 233–236.

Teramoto, W., Hidaka, S., Sugita, Y., Sakamoto, S., Gyoba, J., Iwaya, Y., & Suzuki, Y. (2012). Sounds can alter the perceived direction of a moving visual object. Journal of Vision, 12, 1–12.

Van der Burg, E., Olivers, C. N., Bronkhorst, A. W., & Theeuwes, J. (2008). Pip and pop: Nonspatial auditory signals improve spatial visual search. Journal of Experimental Psychology. Human Perception and Performance, 34, 1053–1065.

Van der Burg, E., Cass, J., Olivers, C. N. L., Theeuwes, J., & Alais, D. (2010). Efficient visual search from synchronized auditory signals requires transient audiovisual events. PLoS One, 5(5), e10664.

Van der Burg, E., Olivers, C. N. L., & Theeuwes, J. (2012). The size of the attentional window modulates capture by audiovisual events. PLoS One, 7(7), e39137.

Van Wanrooij, M. M., Bell, A. H., Munoz, D. P., & Van Opstal, A. J. (2009). The effect of spatial-temporal audiovisual disparities on saccades in a complex scene. Experimental Brain Research, 198, 425–437.

Van Wanrooij, M. M., Bremen, P., & Van Opstal, A. J. (2010). Acquired prior knowledge modulates audiovisual integration. European Journal of Neuroscience, 31, 1763–1771.

van Wassenhove, V., Grant, K. W., & Poeppel, D. (2007). Temporal window of integration in auditory-visual speech perception. Neuropsychologia, 45, 598–607.

Vatakis, A., Ghazanfar, A., & Spence, C. (2008). Facilitation of multisensory integration by the ‘unity assumption’: Is speech special? Journal of Vision, 8, 1–11.

Vatakis, A., & Spence, C. (2007). Crossmodal binding: Evaluating the "unity assumption" using audiovisual speech stimuli. Perception & Psychophysics, 69, 744–756.

Vatakis, A., & Spence, C. (2008). Evaluating the influence of the 'unity assumption' on the temporal perception of realistic audiovisual stimuli. Acta Psychologica, 127, 12–23.

Verstraten, F. A. J., & Ashida, H. (2005). Attention-based motion perception and motion adaptation: What does attention contribute? Vision Research, 45, 1313–1319.

von Helmholtz, H. (1962). Treatise on physiological optics. Dover Publications

Vroomen, J., Bertelson, P., & de Gelder, B. (2001a). Directing spatial attention towards the illusory location of a ventriloquized sound. Acta Psychologica, 108, 21–33.

Vroomen, J., Bertelson, P., & de Gelder, B. (2001b). The ventriloquist effect does not depend on the direction of automatic visual attention. Perception & Psychophysics, 63, 651–659.

Vroomen, J., & de Gelder, B. (2000). Sound enhances visual perception: Cross-modal effects of auditory organization on vision. Journal of Experimental Psychology. Human Perception and Performance, 26, 1583–1590.

Vroomen, J., & de Gelder, B. (2003). Visual motion influences the contingent auditory motion aftereffect. Psychological Science, 14, 357–361.

Vroomen, J., & de Gelder, B. (2004a). Perceptual Effects of Cross-modal Stimulation: Ventriloquism and the Freezing Phenomenon. In G. A. Calvert, C. Spence, & B. E. Stein (Eds.), The Handbook of multisensory processes (pp. 141–150). Cambridge: MIT Press.

Vroomen, J., & de Gelder, B. (2004b). Temporal ventriloquism: Sound modulates the flash-lag effect. Journal of Experimental Psychology. Human Perception and Performance, 30, 513–518.

Vroomen, J., Keetels, M., de Gelder, B., & Bertelson, P. (2004). Recalibration of temporal order perception by exposure to audio-visual asynchrony. Cognitive Brain Research, 22, 32–35.

Vroomen, J., & Keetels, M. (2006). The spatial constraint in intersensory pairing: No role in temporal ventriloquism. Journal of Experimental Psychology. Human Perception and Performance, 32, 1063–1071.

Vroomen, J., & Keetels, M. (2010). Perception of intersensory synchrony: A tutorial review. Attention, Perception, & Psychophysics, 72, 871–884.

Vroomen, J., & Stekelenburg, J. J. (2011). Perception of intersensory synchrony in audiovisual speech: Not that special. Cognition, 118, 78–86.

Wallace, M. T., & Stein, B. E. (2007). Early experience determines how the senses will interact. Journal of Neurophysiology, 97, 921–926.

Wallace, M. T., Roberson, G. E., Hairston, W. D., Stein, B. E., Vaughan, J. W., & Schirillo, J. A. (2004). Unifying multisensory signals across time and space. Experimental Brain Research, 158, 252–258.

Warren, D. H., Welch, R. B., & McCarthy, T. J. (1981). The role of visual-auditory "compellingness" in the ventriloquism effect: Implications for transitivity among the spatial senses. Perception & Psychophysics, 30, 557–564.

Watanabe, K., & Shimojo, S. (2001). When sound affects vision: Effects of auditory grouping on visual motion perception. Psychological Science, 12, 109–116.

Welch, R. B. (1978). Perceptual modification: Adapting to altered sensory environments. New York.: Academic Press.

Welch, R. B., DuttonHurt, L. D., & Warren, D. H. (1986). Contributions of audition and vision to temporal rate perception. Perception & Psychophysics, 39, 294–300.

Welch, R. B., & Warren, D. H. (1980). Immediate perceptual response to intersensory discrepancy. Psychological Bulletin, 88, 638–667.

Wilson, E. C., Reed, C. M., & Braida, L. D. (2009). Integration of auditory and vibrotactile stimuli: Effects of phase and stimulus-onset asynchrony. Journal of .Acoustic Society of America, 126, 1960–1974.

Witten, I. B., & Knudsen, E. I. (2005). Why seeing is believing: Merging auditory and visual worlds. Neuron, 48, 489–496.

Wozny, D. R., & Shams, L. (2011a). Computational characterization of visually induced auditory spatial adaptation. Frontiers in Integrative Neuroscience, 5, 75.

Wozny, D. R., & Shams, L. (2011b). Recalibration of auditory space following milliseconds of cross-modal discrepancy. The Journal of Neuroscience, 31, 4607–4612.

Wuerger, S. M., Hofbauer, M., & Meyer, G. F. (2003). The integration of auditory and visual motion signals at threshold. Perception & Psychophysics, 65, 1188–1196.

Yamamoto, S., Miyazaki, M., Iwano, T., & Kitazawa, S. (2012). Bayesian calibration of simultaneity in audiovisual temporal order judgment. PLoS One, 7(7), e40379.

Yarrow, K., Roseboom, W., & Arnold, D. W. (2011). Spatial grouping resolves ambiguity to drive temporal recalibration. Journal of Experimental Psychology. Human Perception and Performance, 37, 1657–1661.

Zwiers, M. P., Van Opstal, A. J., & Paige, G. D. (2003). Plasticity in human sound localization induced by compressed spatial vision. Nature Neuroscience, 6, 175–181.