Intersection theory on the moduli space of curves and the matrix airy function

Springer Science and Business Media LLC - Tập 147 Số 1 - Trang 1-23 - 1992
Maxim Kontsevich1
1Max-Planck-Institut für Mathematik, Bonn 1, Federal Republic of Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

[AvM] Adler, M., van Moerbeke, P.: TheW p-gravity version of the Witten-Kontsevich model. Commun. Math. Phys. (to appear)

[BIZ] Bessis, D., Itzykson, C., Zuber, J.-B.: Qunatum field theory techniques in graphical enumeration. Adv. Appl. Math.1, 109–157 (1980)

[BK] Brézin, E., Kazakov, V.: LettB236, 144 (1990)

[DS] Douglas, M., Shenker, S.: Nucl. Phys.B335, 635 (1990)

[GM] Gross, D., Migdal, A.: Phys. Rev. Lett.64, 127 (1990)

[H] Harer, J.: The cohomology of the moduli space of curves. Lecture Notes of mathematics, vol. 1337. Berlin, Heidelberg, New York: Springer, pp. 138–221

[HZ] Harer, J., Zagier, D.: The Euler characteristic of the moduli space of curves. Inv. Math.85, 457–485 (1986)

[HC] Harish-Chandra: Differential operators on a semisimple Lie algebra. Am. J. Math.79, 87–120 (1957)

[IZ1] Itzykson, C., Zuber, J.-B.: J. Math. Phys.21, 411–421 (1980)

[IZ2] Itzykson, C., Zuber, J.-B.: Commun. Math. Phys.134, 197–207 (1990)

[KS] Kac, V., Schwarz, A.: LettB257, 329 (1991)

[KMMMZ] Kharchev, S., Marshakov, A., Mironov, A., Morozov, A., Zabrodin, A.: Unification of all string models withc<1, FIAN/TD-9/91 and ITEP-M-8/91

[K1] Kontsevich, M.: Intersection theory on the moduli space of curves. Funct. Anal. and Appl.25 (2), 123–128 (1991)

[K2] Kontsevich, M. Intersection theory on the moduli space of curves and the matrix Airy function. 30. Arbeitstagung Bonn. Preprint MPI/91-47

[KM] Kontsevich, M., Mulase, M.: In preparation

[Mh] Mehta, M. L.: Random matrices in nuclear physics and number theory. Contemporary Math.50, 295–309 (1986)

[M] Mumford, D.: Towards an enumerative geometry of the moduli space of curves. In: Arithmetic and geometry, vol. II. Boston: Birkhäuser 1983

[P1] Penner, R. C.: The decorated Teichmüller space of punctured surfaces. Commun. Math. Phys.113, 299–339 (1987)

[P2] Penner, R. C.: Perturbative series and the moduli space of Riemann surfaces. J. Diff. Geom.27, 35–53 (1988)

[P3] Penner, R. C.: The Poincaré dual of the Weil-Petersson Kähler two-form. Preprint, October 1991

[SW] Segal, G. B., Wilson, G.: Loop groops and equations of KdV type. Publ. Math. I.H.E.S.61, 5–65 (1985)

[S] Strebel, K.: Quadratic differentials. Berlin, Heidelberg, New York: Springer 1984

[W1] Witten, E.: Two dimensional gravity and intersection theory on moduli space. Surveys in Diff. Geom.1, 243–310 (1991)

[W2] Witten, E.: On the Kontsevich model and other models of two dimensional gravity. IAS preprint HEP-91/24

[W3] Witten, E.: TheN matrix model and gauged WZW models. IAS preprint HEP-91/26

[Z] Zwiebach, B.: How covariant closed string theory solves a minimal area problem. Commun. Math. Phys.136, 83–118