Intersecting Genetics of Frailty and Cardiovascular Disease
Tóm tắt
To determine the genetic correlates of physical frailty and sarcopenia, focusing on single nucleotide polymorphisms (SNPs) in genome-wide association studies (GWAS), and to explore the genetic overlap of frailty with cardiovascular disease (CVD) and its risk factors. PubMed was systematically searched for GWAS studies investigating the association between SNPs and objective measures of physical frailty or sarcopenia. SNPs were retained if they were associated with one of the phenotypes of interest by a p-value of 5.0×10−8 or less. Ten studies were included, with a total of 237 SNPs in 181 genes being associated with physical frailty or sarcopenia; as measured by handgrip strength or lean (muscle) mass. These genes were cross-referenced in the GWAS Catalog, and many of them were found to be associated with CVD or metabolic syndrome. Evidence from GWAS has shown that frailty is associated with common genetic polymorphisms. Many of these polymorphisms have been implicated in CVD, supporting the hypothesis of a shared pathophysiology between these entities. Future studies are eagerly anticipated to map out the mechanistic links and discover therapeutic targets and novel biomarkers for frailty.
Tài liệu tham khảo
Bergman H, Ferrucci L, Guralnik J, Hogan DB, Hummel S, Karunananthan S, et al. Frailty: An emerging research and clinical paradigm — Issues and controversies. Journals Gerontol — Ser A Biol Sci Med Sci. 2007;62(7):731–737. https://doi.org/10.1093/gerona/62.7.731
Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31. https://doi.org/10.1093/ageing/afy169
Afilalo J. Conceptual Models of Frailty: The Sarcopenia Phenotype. Can J Cardiol. 2016;32(9):1051–1055. https://doi.org/10.1016/j.cjca.2016.05.017
Hoogendijk EO, Afilalo J, Ensrud KE, Kowal P, Onder G, Fried LP. Frailty: implications for clinical practice and public health. Lancet. 2019;394(10206):1365–1375. https://doi.org/10.1016/S0140-6736(19)31786-6
Farooqi MAM, Gerstein H, Yusuf S, Leong DP. Accumulation of Deficits as a Key Risk Factor for Cardiovascular Morbidity and Mortality: A Pooled Analysis of 154 000 Individuals. J Am Heart Assoc. 2020;9(3):e014686. https://doi.org/10.1161/JAHA.119.014686
Afilalo J, Alexander KP, Mack MJ, Maurer MS, Green P, Allen LA, et al. Frailty assessment in the cardiovascular care of older adults. J Am Coll Cardiol. 2014;63(8):747–762. https://doi.org/10.1016/j.jacc.2013.09.070
Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in Older Adults: Evidence for a Phenotype. Journals Gerontol Ser A Biol Sci Med Sci. 2001;56(3):M146–57. https://doi.org/10.1093/gerona/56.3.m146
Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K. Frailty in elderly people. The Lancet. 2013;381:752–762. https://doi.org/10.1016/S0140-6736(12)62167-9
Barzilay JI, Blaum C, Moore T, Qian LX, Hirsch CH, Walston JD, et al. Insulin resistance and inflammation as precursors of frailty: The cardiovascular health study. Arch Intern Med. 2007;167(7):635–41. https://doi.org/10.1001/archinte.167.7.635.
Kalyani RR, Varadhan R, Weiss CO, Fried LP, Cappola AR. Frailty status and altered glucose-insulin dynamics. Journals Gerontol — Ser A Biol Sci Med Sci. 2012;67(12):1300–1306. https://doi.org/10.1093/gerona/glr141
Fedarko NS. The Biology of Aging and Frailty. Clin Geriatr Med. 2011;27(1):27–37 https://doi.org/10.1016/j.cger.2010.08.006
Flint J. GWAS. Curr Biol. 2013;23(7):R265–R266. https://doi.org/10.1016/j.cub.2013.01.040
Fadista J, Manning AK, Florez JC, Groop L. The (in)famous GWAS P-value threshold revisited and updated for low-frequency variants. Eur J Hum Genet. 2016;24(8):1202–1205. https://doi.org/10.1038/ejhg2015269
Singh AN, Gasman B. Disentangling the genetics of sarcopenia: Prioritization of NUDT3 and KLF5 as genes for lean mass & HLA-DQB1-AS1 for hand grip strength with the associated enhancing SNPs & a scoring system. BMC Med Genet. 2020;21(1). https://doi.org/10.1186/s12881-020-0977-6
Database G. GeneCards — Human Genes ∣ Gene Database ∣ Gene Search [Internet]. Genecards.org. 2017 [cited 2020 May 1]. Available from: https://www.genecards.org/
Ran S, Jiang ZX, He X, Liu Y, Zhang YX, Zhang L, et al. Replication of FTO Gene associated with lean mass in a Meta-Analysis of Genome-Wide Association Studies. Sci Rep. 2020 Dec 1;10(1). https://doi.org/10.1038/s41598-020-61406-3
Loos RJF, Yeo GSH. The bigger picture of FTO — The first GWAS-identified obesity gene. Nat Rev Endocrinol. 2014;10(1):51–61. https://doi.org/10.1038/nrendo.2013.227
Zillikens MC, Demissie S, Hsu YH, Yerges-Armstrong LM, Chou WC, Stolk L, et al. Large meta-analysis of genome-wide association studies identifies five loci for lean body mass. Nat Commun. 2017;8(1). https://doi.org/10.1038/s41467-017-00031-7
Karasik D, Zillikens MC, Hsu YH, Aghdassi A, Akesson K, Amin N, et al. Disentangling the genetics of lean mass. Am J Clin Nutr. 2019;109(2):276–278. https://doi.org/10.1093/ajcn/nqy272
Tikkanen E, Gustafsson S, Amar D, Shcherbina A, Waggott D, Ashley EA, et al. Biological insights into muscular strength: Genetic findings in the UK Biobank. Sci Rep. 2018;8(1). https://doi.org/10.1038/s41598-018-24735-y
Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518(7538):197–206. https://doi.org/10.1038/nature14177
Willems SM, Wright DJ, Day FR, Trajanoska K, Joshi PK, Morris JA, et al. Largescale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness. Nat Commun. 2017;8. https://doi.org/10.1038/ncomms16015
Hao Q, Song X, Yang M, Dong B, Rockwood K. Understanding risk in the oldest old: Frailty and the metabolic syndrome in a Chinese community sample aged 90+ years. J Nutr Heal Aging. 2016;20(1):82–8. https://doi.org/10.1007/s12603-016-0680-7
Gale CR, Cooper C, Sayer AA. Framingham cardiovascular disease risk scores and incident frailty: the English longitudinal study of ageing. Age (Omaha). 2014;36(4). https://doi.org/10.1007/s11357-014-9692-6
Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone C, McMahon A, Morales J, Mountjoy E, Sollis E, Suveges D, Vrousgou O, Whetzel PL, Amode R, Guillen JA, Riat HS, Trevanion SJ, Hall P, Junkins H, Flicek P, Burdett T, Hindorff LA CF and PH. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res [Internet]. 2019;47(Database Issue):D1005-12. Available from: https://www.ebi.ac.uk/gwas/docs/methods/criteria
Hainerová I, Larsen LH, Holst B, Finková M, Hainer V, Lebl J, et al. Melanocortin 4 receptor mutations in obese Czech children: Studies of prevalence, phenotype development, weight reduction response, and functional analysis. J Clin Endocrinol Metab. 2007;92(9):3689–3696. https://doi.org/10.1210/jc.2007-0352
Teslovich TM, Musunuru K, Smith A V., Edmondson AC, Stylianou IM, Koseki M, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466(7307):707–13. https://doi.org/10.1038/nature09270
Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478(7367):103–9. https://doi.org/10.1038/nature10405
Johansson A, Eriksson N, Lindholm D, Varenhorst C, James S, Syvänen AC, et al. Genome-wide association and Mendelian randomization study of NT-proBNP in patients with acute coronary syndrome. Hum Mol Genet. 2016;25(7):1447–56. https://doi.org/10.1093/hmg/ddw012
Yamamoto A, Nonen S, Fukuda T, Yamazaki H, Azuma J. Genetic polymorphisms of glycine N-acyltransferase in Japanese individuals. Drug Metab Pharmacokinet. 2009;24(1):114–117. https://doi.org/10.2133/dmpk.24.114
Lino Cardenas CL, Bourgine J, Cauffiez C, Allorge D, Lo-Guidice JM, Broly F, et al. Genetic polymorphisms of glycine N-acyltransferase (GLYAT) in a French Caucasian population. Xenobiotica. 2010;40(12):853–61. https://doi.org/10.3109/00498254.2010.519407
Guo YF, Zhang LS, Liu YJ, Hu HG, Li J, Tian Q, et al. Suggestion of GLYAT gene underlying variation of bone size and body lean mass as revealed by a bivariate genome-wide association study. Hum Genet. 2013;132(2):189–99. https://doi.org/10.1007/s00439-012-1236-5
Kichaev G, Bhatia G, Loh PR, Gazal S, Burch K, Freund MK, et al. Leveraging Polygenic Functional Enrichment to Improve GWAS Power. Am J Hum Genet. 2019;104(1):65–75. https://doi.org/10.1016/j.ajhg.2018.11.008
Afilalo J, Karunananthan S, Eisenberg MJ, Alexander KP, Bergman H. Role of Frailty in Patients With Cardiovascular Disease. Am J Cardiol. 2009;103(11):1616–1621. https://doi.org/10.1016/j.amjcard.2009.01.375
Newman AB, Gottdiener JS, McBurnie MA, Hirsch CH, Kop WJ, Tracy R, et al. Associations of subclinical cardiovascular disease with frailty. Journals Gerontol — Ser A Biol Sci Med Sci. 2001;56(3):M158–M166. https://doi.org/10.1093/gerona/56.3.M158
Ishii S, Tanaka T, Akishita M, Ouchi Y, Tuji T, Iijima K, et al. Metabolic syndrome, sarcopenia and role of sex and age: Cross-sectional analysis of Kashiwa cohort study. PLoS One. 2014;9(11):112718. https://doi.org/10.1371/journal.pone.0112718
Alberti KGMM, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: A joint interim statement of the international diabetes federation task force on epidemiology and prevention; National heart, lung, and blood institute; American heart association; World heart federation; International. Circulation. 2009;120(16):1640–1645. https://doi.org/10.1161/CIRCULATIONAHA.109.192644.
Blaum CS, Xue QL, Tian J, Semba RD, Fried LP, Walston J. Is hyperglycemia associated with frailty status in older women?: Clinical investigations. J Am Geriatr Soc. 2009;57(5):840–7. https://doi.org/10.1111/j.1532-5415.2009.02196.x
Viscogliosi G. The Metabolic Syndrome: A Risk Factor for the Frailty Syndrome? J Am Med Dir Assoc. 2016;17(4):364–366. https://doi.org/10.1016/j.jamda.2016.01.005
Viscogliosi G, Andreozzi P, Ettorre E, Chiriac IM. The Metabolic Syndrome and the Phenotype of Frailty: A Causal Link? J Am Med Dir Assoc. 2016;17(10):956–957. https://doi.org/10.1016/j.jamda.2016.06.018
Pérez-Tasigchana RF, León-Muñoz LM, Lopez-Garcia E, Gutierrez-Fisac JL, Laclaustra M, Rodríguez-Artalejo F, et al. Metabolic syndrome and insulin resistance are associated with frailty in older adults: A prospective cohort study. Age Ageing. 2017;46(5):807–812. https://doi.org/10.1093/ageing/afx023
Stephen WC, Janssen I. Sarcopenic-obesity and cardiovascular disease risk in the elderly. J Nutr Heal Aging. 2009;13(5):460–6. https://doi.org/10.1007/s12603-009-0084-z
Raymond ER, Reynolds C, Aslan AKD, Finkel D, Eriksson M, Hagg S, et al. Drivers of Frailty from Adulthood into Old Age: Results from a 27-year Longitudinal Population-Based Study in Sweden. medRxiv. November 2019:19012476. https://doi.org/10.1101/19012476.
Yusuf S, Hawken S, Ôunpuu S, Bautista L, Franzosi MG, Commerford P, et al. Obesity and the risk of myocardial infarction in 27 000 participants from 52 countries: A case-control study. Lancet. 2005;366(9497):1640–9. https://doi.org/10.1016/S0140-6736(05)67663-5
Hernandez Cordero AI, Gonzales NM, Parker CC, Sokolof G, Vandenbergh DJ, Cheng R, et al. Genome-wide Associations Reveal Human-Mouse Genetic Convergence and Modifiers of Myogenesis, CPNE1 and STC2. Am J Hum Genet. 2019;105(6):1222–1236. https://doi.org/10.1016/j.ajhg.2019.10.014
Muscedere J, Kim PM, Afilalo J, Balion C, Baracos VE, Bowdish D, et al. Proceedings of the Canadian Frailty Network Workshop: Identifying Biomarkers of Frailty to Support Frailty Risk Assessment, Diagnosis and Prognosis. Toronto, January 15, 2018. In: The Journal of frailty & aging. NLM (Medline); 2019. p. 106–116. https://doi.org/10.14283/jfa.2019.12
Walston J, Bandeen-Roche K, Buta B, Bergman H, Gill TM, Morley JE, et al. Moving Frailty Toward Clinical Practice: NIA Intramural Frailty Science Symposium Summary. J Am Geriatr Soc. 2019;67(8):1559–1564. https://doi.org/10.1111/jgs.15928
Thanassoulis G. Mendelian Randomization: How Genetics Is Pushing the Boundaries of Epidemiology to Identify New Causes of Heart Disease. Can J Cardiol. 2013;29(1):30–36. https://doi.org/10.1016/j.cjca.2012.09.014
Wang Q, Wang Y, Lehto K, Pedersen NL, Williams DM, Hägg S. Geneticallypredicted life-long lowering of low-density lipoprotein cholesterol is associated with decreased frailty: A Mendelian randomization study in UK biobank. EBioMedicine. 2019;45:487–494. https://doi.org/10.1016/j.ebiom.2019.07.007
Xu L, Hao YT. Effect of handgrip on coronary artery disease and myocardial infarction: A Mendelian randomization study. Sci Rep. 2017;7(1):1–5. https://doi.org/10.1038/s41598-017-01073-z
Torkamani A, Wineinger NE, Topol EJ. The personal and clinical utility of polygenic risk scores. Nat Rev Genet. 2018;19(9):581–590. https://doi.org/10.1038/s41576-018-0018-x
Heinl RE, Dhindsa DS, Mahlof EN, Schultz WM, Ricketts JC, Varghese T, et al. Comprehensive Cardiovascular Risk Reduction and Cardiac Rehabilitation in Diabetes and the Metabolic Syndrome. Can J Cardiol. 2016;32(10):S349–S357. https://doi.org/10.1016/j.cjca.2016.07.507
Dent E, Martin FC, Bergman H, Woo J, Romero-Ortuno R, Walston JD. Management of frailty: opportunities, challenges, and future directions. Lancet. 2019;394(10206):1376–1386. https://doi.org/10.1016/S0140-6736(19)31785-4