Interpreting the Infinitesimal Mathematics of Leibniz and Euler

Jacques Bair1, Piotr Błaszczyk2, Robert Ely3, Valérie Henry4, Vladimir Kanovei5, Karin U. Katz6, Mikhail G. Katz6, S. S. Kutateladze7, Thomas McGaffey8, Patrick Reeder9, David Schaps10, David Sherry11, Steven Shnider6
1HEC-ULG, University of Liege, 4000, Liège, Belgium
2Institute of Mathematics, Pedagogical University of Cracow, Kraków, Poland
3Department of Mathematics, University of Idaho, Moscow, ID 83844, USA
4Department of Mathematics, University of Namur, 5000, Namur, Belgium
5IPPI, Moscow, and MIIT, Moscow, Russia
6Department of Mathematics, Bar-Ilan University, 52900 Ramat-Gan, Israel
7Sobolev Institute of Mathematics, Novosibirsk State University, Novosibirsk, Russia
8Rice University, Houston, TX, USA
9Kenyon College, Gambier, OH, USA
10Department of Classical Studies, Bar Ilan University, 52900, Ramat Gan, Israel
11Department of Philosophy, Northern Arizona University, Flagstaff, AZ, 86011, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Arthur, R. (2008). Leery Bedfellows: Newton and Leibniz on the status of infinitesimals. In Ursula Goldenbaum & Douglas Jesseph (Eds.), Infinitesimal differences: Controversies between Leibniz and his contemporaries (pp. 7–30). Berlin and New York: de Gruyter.

Bair, J., Błaszczyk, P., Ely, R., Henry, V., Kanovei, V., Katz, K., Katz, M., Kutateladze, S., McGaffey, T., Schaps, D., Sherry, D. & Shnider, S. (2013). Is mathematical history written by the victors? Notices of the American Mathematical Society, 60(7), 886–904.

Bascelli, T., Bottazzi, E., Herzberg, F., Kanovei, V., Katz, K., Katz, M., et al. (2014). Fermat, Leibniz, Euler, and the gang: The true history of the concepts of limit and shadow. Notices of the American Mathematical Society, 61(8), 848–864.

Bascelli, T., Błaszczyk, P., Kanovei, V., Katz, K., Katz, M., Schaps, D. & Sherry, D. (2016). Leibniz vs Ishiguro: Closing a quarter-century of syncategoremania. HOPOS: The Journal of the International Society for the History of Philosophy of Science, 6(1), 117–147.

Beckmann, F. (1967/1968). Neue Gesichtspunkte zum 5. Buch Euklids. Archive for History Exact Sciences, 4, 1–144.

Bell, J. (2008). A primer of infinitesimal analysis (2nd ed.). Cambridge: Cambridge University Press.

Benacerraf, P. (1965). What numbers could not be. The Philosophical Review, 74, 47–73.

Benci, V., & Di Nasso, M. (2003). Numerosities of labelled sets: A new way of counting. Advances in Mathematics, 173(1), 50–67.

Berkeley, G. (1734). The analyst, a discourse addressed to an infidel mathematician.

Błaszczyk, P. (2013). A note on Otto Hölder’s treatise Die Axiome der Quantität und die Lehre vom Mass. Annales Academiae Paedagogicae Cracoviensis. Studia ad Didacticum Mathematicae V, 129–142 [In Polish].

Błaszczyk, P., Katz, M., & Sherry, D. (2013). Ten misconceptions from the history of analysis and their debunking. Foundations of Science, 18(1), 43–74.

Błaszczyk, P., Kanovei, V., Katz, M., & Sherry, D. (2016). Controversies in the foundations of analysis: Comments on Schubring’s conflicts. Foundations of Science. doi: 10.1007/s10699-015-9473-4 . Online first.

Błaszczyk, P., Mrówka, K. (2013). Euklides, Elementy, Ksiegi V-VI. Tłumaczenie i komentarz [Euclid, Elements, Books V–VI. Translation and commentary]. Krakow: Copernicus.

Borovik, A., & Katz, M. (2012). Who gave you the Cauchy–Weierstrass tale? The dual history of rigorous calculus. Foundations of Science, 17(3), 245–276.

Bos, H. (1974). Differentials, higher-order differentials and the derivative in the Leibnizian calculus. Archive for History of Exact Sciences, 14, 1–90.

Bos, H. (2010). Private communication. Nov 2, 2010.

Boyer, C. (1949). The concepts of the calculus. New York: Hafner.

Bradley, R., & Sandifer, C. (2009). Cauchy’s Cours d’analyse. An annotated translation. Sources and Studies in the History of Mathematics and Physical Sciences. New York: Springer.

Breger, H. (1992). Le continu chez Leibniz. Le labyrinthe du continu (Cerisy-la-Salle, 1990) (pp. 76–84). Paris: Springer.

Carroll, M., Dougherty, S., & Perkins, D. (2013). Indivisibles, infinitesimals and a tale of seventeenth-century mathematics. Mathematics Magazine, 86(4), 239–254.

Cauchy, A.L. (1823). Résumé des Leçons données à l’Ecole Royale Polytechnique sur le Calcul Infinitésimal. Paris, Imprimérie Royale, 1823. In Oeuvres complètes, Series 2, Vol. 4, pp. 9–261. Paris: Gauthier-Villars (1899).

Ciesielski, K., & Miller, D. (2016). A continuous tale on continuous and separately continuous functions. Real Analysis Exchange, 41(1), 19–54.

Clavius, C. (1589). Euclidis elementorum. Libri XV, Roma.

Dauben, J. (1980). The development of Cantorian set theory. In I. Grattan-Guinnes (Ed.), From the calculus to set theory, 1630–1910 (pp. 181–219). Princeton: Princeton University Press.

De Risi, V. (2016). The development of euclidean axiomatics. The systems of principles and the foundations of mathematics in editions of the elements from antiquity to the eighteenth century. Archive for History of Exact Science, online first. doi: 10.1007/s00407-015-0173-9 .

Di Nasso, M., & Forti, M. (2010). Numerosities of point sets over the real line. Transactions of the American Mathematical Society, 362(10), 5355–5371.

Dijksterhuis, D. (1987). Archimedes 1987. Princeton: Princeton University Press.

Edwards, C. H, Jr. (1979). The historical development of the calculus. New York/Heidelberg: Springer.

Edwards, H. (2007). Euler’s definition of the derivative. Bulletin of the American Mathematical Society (NS), 44(4), 575–580.

Edwards, H. (2015). Euler’s conception of the derivative. The Mathematical Intelligencer, 47(4), 52–53.

Ehrlich, P. (2006). The rise of non-Archimedean mathematics and the roots of a misconception. I. The emergence of non-Archimedean systems of magnitudes. Archive for History of Exact Sciences, 60(1), 1–121.

Euclid. (1660). Euclide’s Elements, The whole Fifteen Books, compendiously Demonstrated. By Mr. Isaac Barrow Fellow of Trinity College in Cambridge. And Translated out of the Latin. London.

Euclid. (2007). Euclid’s Elements of Geometry. Edited, and provided with a modern English translation, by Richard Fitzpatrick. See http://farside.ph.utexas.edu/euclid.html

Euler, L. (1730–1731). De progressionibus trascendentibus seu quarum termini generales algebraice dari nequeunt. In Euler, Opera omnia (Series I, Opera Mathematica, Berlin, Bern, Leipzig, 1911–...), 14(1), 1–24.

Euler, L. (1748). Introductio in Analysin Infinitorum, Tomus primus. Saint Petersburg and Lausana.

Euler, L. (1755). Institutiones Calculi Differentialis. Saint Petersburg.

Euler, L. (1768–1770). Institutionum calculi integralis.

Euler, L. (1771). Vollständige Anleitung zur Algebra. St. Petersburg: Kaiserliche Akademie der Wissenschaften.

Euler, L. (1807). Éléments d’algèbre. Paris: Courcier.

Euler, L. (1810). Elements of Algebra. Translated form the French with additions of La Grange, Johson and Co., London.

Euler, L. (1988). Introduction to analysis of the infinite. Book I. New York: Springer.

Euler, L. (2000). Foundations of Differential Calculus. New York: Springer.

Ferraro, G. (1998). Some aspects of Euler’s theory of series: Inexplicable functions and the Euler–Maclaurin summation formula. Historia Mathematica, 25(3), 290–317.

Ferraro, G. (2004). Differentials and differential coefficients in the Eulerian foundations of the calculus. Historia Mathematica, 31(1), 34–61.

Ferraro, G. (2007). Euler’s treatises on infinitesimal analysis: Introductio in analysin infinitorum, institutiones calculi differentialis, institutionum calculi integralis. In R. Baker (Ed.), Euler reconsidered (pp. 39–101). Heber City: Kendrick Press.

Ferraro, G. (2008). The rise and development of the theory of series up to the early 1820s. Sources and Studies in the History of Mathematics and Physical Sciences. New York: Springer.

Ferraro, G. (2012). Euler, infinitesimals and limits. Manuscript (Feb 2012). See http://halshs.archives-ouvertes.fr/halshs-00657694

Ferraro, G., & Panza, M. (2003). Developing into series and returning from series: A note on the foundations of eighteenth-century analysis. Historia Mathematica, 30(1), 17–46.

Fraenkel, A. (1928). Einleitung in die Mengenlehre. Berlin: Springer.

Fraser, C. (1999). Book review: Paolo Mancosu. Philosophy of mathematics and mathematical practice in the seventeenth century. Notre Dame Journal of Formal Logic, 40(3), 447–454.

Fraser, C. (2015). Nonstandard analysis, infinitesimals, and the history of calculus. In D. Row & W. Horng (Eds.), A delicate balance: Global perspectives on innovation and tradition in the history of mathematics (pp. 25–49). Birkhäuser: Springer.

Gerhardt, C. I. (Ed.). (1850–1863). Leibnizens mathematische Schriften. Berlin and Halle: Eidmann.

Gödel, K. (1990). Collected Works. In Feferman, S., Dawson, J., Kleene, S., Moore, G., Solovay, R., & van Heijenoort, J. (Eds). Vol. II. New York: Oxford University Press.

Goldblatt, R. (1998). Lectures on the hyperreals. An introduction to nonstandard analysis. Graduate Texts in Mathematics 188. New York: Springer.

Gordon, E., Kusraev, A.&, Kutateladze, S. (2002). Infinitesimal analysis. Dordrecht: Kluwer.

Grant, E. (1974). The definitions of Book V of Euclid’s Elements in thirteenth-century version, and commentary. Campanus of Novara. In E. Grant (Ed.), A source book in medieval science (pp. 136–149). Cambridge, MA: Harvard University Press.

Gray, J. (2008a). Plato’s ghost. The modernist transformation of mathematics. Princeton: Princeton University Press.

Gray, J. (2008b). A short life of Euler. BSHM Bulletin, 23(1), 1–12.

Hacking, I. (2014). Why is there philosophy of mathematics at all? Cambridge: Cambridge University Press.

Heiberg, J. (1881). Archimedis Opera Omnia cum Archimedis Opera Omnia cum Commentariis Eutocii (Vol. I). Leipzig: Teubner.

Heiberg, J. (1883–1888). Euclidis Elementa, Vol. I–V. Leipzig: Teubner.

Hölder, O. (1901). Die Axiome der Quantität und die Lehre vom Mass. Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig. Mathematisch-physikalische Classe, 53, 1–64.

Hölder, O. (1996). The axioms of quantity and the theory of measurement. Translated from the 1901 German original and with notes by Joel michell & Catherine Ernst. With an introduction by Michell. The Journal of Mathematical Psychology, 40(3), 235–252.

Ishiguro, H. (1990). Leibniz’s philosophy of logic and language (2nd ed.). Cambridge: Cambridge University Press.

Jesseph, D. (2015). Leibniz on the elimination of infinitesimals. In N. B. Goethe, P. Beeley & D. Rabouin (Eds.), G.W. Leibniz, Interrelations between mathematics and philosophy. Archimedes Series 41 (pp. 189–205). Berlin: Springer.

Kanovei, V. (1988). The correctness of Euler’s method for the factorization of the sine function into an infinite product. Russian Mathematical Surveys, 43, 65–94.

Kanovei, V., Katz, K., Katz, M., Nowik, T. (2016). Small oscillations of the pendulum, Euler’s method, and adequality. Quantum Studies: Mathematics and Foundations.

Kanovei, V., Katz, M., Mormann, T. (2013). Tools, objects, and chimeras: Connes on the role of hyperreals in mathematics. Foundations of Science 18(2), 259–296.

Kanovei, V., Katz, K., Katz, M., & Schaps, M. (2015). Proofs and retributions, Or: Why Sarah can’t take limits. Foundations of Science, 20(1), 1–25.

Kanovei, V., Katz, K., Katz, M., Sherry, D. (2015). Euler’s lute and Edwards’ oud. The Mathematical Intelligencer, 37(4), 48–51.

Kanovei, V., & Reeken, M. (2004). Nonstandard analysis, axiomatically. Springer Monographs in Mathematics. Berlin: Springer.

Katz, K., Katz, M. (2011). Cauchy’s continuum. Perspectives on Science, 19(4), 426–452.

Katz, M., Schaps, D., Shnider, S. (2013). Almost equal: The method of adequality from diophantus to fermat and beyond. Perspectives on Science, 21(3), 283–324.

Katz, M., Sherry, D. (2012). “Leibniz’s laws of continuity and homogeneity. Notices of the American Mathematical Society, 59(11), 1550–1558.

Katz, M. & Sherry, D. (2013). Leibniz’s infinitesimals: Their fictionality, their modern implementations, and their foes from Berkeley to Russell and beyond. Erkenntnis, 78(3), 571–625.

Katz, V. (2014). Review of “Bair et al., Is mathematical history written by the victors?” Notices American Mathematical Society, 60(7), 886–904.

Keisler, H. J. (1986). Elementary calculus: An infinitesimal approach. Second Edition. Prindle, Weber & Schimidt, Boston. See online version at http://www.math.wisc.edu/~keisler/calc.html

Klein, F. (1932). Elementary Mathematics from an advanced standpoint. Vol. I.: Arithmetic, algebra, analysis. New York: Macmillan.

Kock, A. (2006). Synthetic differential geometry, 2nd edition. London Mathematical Society Lecture Note Series, 333. Cambridge: Cambridge University Press.

Kuhn, T. (1962). The structure of scientific revolutions. Chicago: University of Chicago Press.

Lakatos, I. (1978). Cauchy and the continuum: The significance of nonstandard analysis for the history and philosophy of mathematics. Mathematical Intelligencer, 1(3), 151–161.

Laugwitz, D. (1987a). Hidden lemmas in the early history of infinite series. Aequationes Mathematicae, 34, 264–276.

Laugwitz, D. (1987b). Infinitely small quantities in Cauchy’s textbooks. Historia Mathematica, 14, 258–274.

Laugwitz, D. (1989). Definite values of infinite sums: Aspects of the foundations of infinitesimal analysis around 1820. Archive for History of Exact Sciences, 39(3), 195–245.

Laugwitz, D. (1992). Leibniz’ principle and omega calculus. Le labyrinthe du continu (Cerisy-la-Salle, 1990) (pp. 144–154). Paris: Springer.

Laugwitz, D. (1999). Bernhard Riemann (1826–1866). Turning points in the conception of mathematics. Boston: Birkhäuser Boston.

Leibniz, G. (1684). “Nova methodus pro maximis et minimis ...” in Acta Erud., Oct. 1684. See [Gerhardt 1850–1863], V, pp. 220–226.

Leibniz, G. (1695). To l’Hospital, 21 june 1695, in [Gerhardt 1850–1863], I, pp. 287–289.

Leibniz, G. (1702). To Varignon, 2 febr., 1702, in [Gerhardt 1850–1863] IV, pp. 91–95.

Leibniz, G. (1710). Symbolismus memorabilis calculi algebraici et infinitesimalis in comparatione potentiarum et differentiarum, et de lege homogeneorum transcendentali. In [Gerhardt 1850–1863, vol. V, pp. 377–382].

l’Hôpital, G. (1696). Analyse des Infiniment Petits pour l’Intelligence des Lignes Courbes.

Luxemburg, W. (1973). What is nonstandard analysis? Papers in the foundations of mathematics. American Mathematical Monthly, 80(6, part II), 38–67.

Mancosu, P. (1996). Philosophy of mathematics and mathematical practice in the seventeenth century. New York: The Clarendon Press.

Mancosu, P. (2009). Measuring the size of infinite collections of natural numbers: Was Cantor’s theory of infinite number inevitable? The Review of Symbolic Logic, 2(4), 612–646.

McKinzie, M., & Tuckey, C. (1997). Hidden lemmas in Euler’s summation of the reciprocals of the squares. Archive for History of Exact Sciences, 51, 29–57.

Mueller, I. (1981). Philosophy of mathematics and deductive structure in Euclid’s Elements. Cambridge, MA: MIT Press.

Nelson, E. (1977). Internal set theory: A new approach to nonstandard analysis. Bulletin of the American Mathematical Society, 83(6), 1165–1198.

Nieuwentijt, B. (1695). Analysis infinitorum, seu curvilineorum proprietates ex polygonorum natura deductae. Amsterdam.

Nowik, T., Katz, M. (2015). Differential geometry via infinitesimal displacements. Journal of Logic and Analysis, 7(5), 1–44.

Panza, M. (2007). Euler’s Introductio in analysin infinitorum and the program of algebraic analysis. In R. Backer (Ed.), Euler reconsidered (pp. 119–166). Heber City: Kendrick Press.

Pulte, H. (1998). Jacobi’s criticism of Lagrange: The changing role of mathematics in the foundations of classical mechanics. Historia Mathematica, 25(2), 154–184.

Pulte, H. (2012). Rational mechanics in the eighteenth century. On structural developments of a mathematical science. Berichte zur Wissenschaftsgeschichte, 35(3), 183–199.

Quine, W. (1968). Ontological relativity. The Journal of Philosophy, 65(7), 185–212.

Reeder, P. (2012). A ‘non-standard analysis’ of Euler’s Introductio in Analysin Infitorum. MWPMW 13. University of Notre Dame, October 27-28, 2012. See http://philosophy.nd.edu/assets/81379/mwpmw_13.summaries.pdf

Reeder, P. (2013). Internal set theory and Euler’s Introductio in analysin infinitorum. M.Sc. Thesis, Ohio State University.

Robinson, A. (1961). “Non-standard analysis. Nederl. Akad. Wetensch. Proc. Ser. A, 64 = Indag. Math., 23, 432–440. (reprinted in Selected Works, see Robinson 1979).

Robinson, A. (1966). Non-standard analysis. Amsterdam: North-Holland Publishing Co.

Robinson, A. (1969). From a formalist’s points of view. Dialectica, 23, 45–49.

Robinson, A. (1979). Selected papers of Abraham Robinson. Vol. II. Nonstandard analysis and philosophy. Edited and with introductions by W. A. J. Luxemburg & S. Körner. New Haven: Yale University Press.

Sandifer, C. (2007). Euler’s solution of the Basel problem–the longer story. In Euler at 300, 105–117. MAA Spectrum, Math. Assoc. America, Washington, DC.

Schubring, G. (2016). Comments on a Paper on Alleged Misconceptions Regarding the History of Analysis: Who Has Misconceptions? Foundations of Science. Online first. doi: 10.1007/s10699-015-9424-0 .

Sherry, D. (1987). The wake of Berkeley’s Analyst: Rigor mathematicae? Studies in History and Philosophy of Science, 18(4), 455–480.

Sherry, D., Katz, M. (2014). Infinitesimals, imaginaries, ideals, and fictions. Studia Leibnitiana, 44(2), 166–192.

Stolz, O. (1883). Zur Geometrie der Alten, insbesondere über ein Axiom des Archimedes. Mathematische Annalen, 22(4), 504–519.

Stolz, O. (1885). Vorlesungen über Allgemeine Arithmetik. Leipzig: Teubner.

Tao, T. (2014). Hilbert’s fifth problem and related topics. Graduate Studies in Mathematics, 153. Providence: American Mathematical Society.

Tho, T. (2012). Equivocation in the foundations of Leibniz’s infinitesimal fictions. Society and Politics, 6(2), 70–98.

Vermij, R. (1989). Bernard Nieuwentijt and the Leibnizian calculus. Studia Leibnitiana, 21(1), 69–86.

Wallis, J. (1656/2004). The arithmetic of infinitesimals. Translated from the Latin and with an introduction by Jaequeline A. Stedall. Sources and Studies in the History of Mathematics and Physical Sciences. New York: Springer.

Wallis, J. (1685). Treatise of Algebra. Oxford.

Wartofsky, M. (1976). The relation between philosophy of science and history of science. In R. S. Cohen, P. K. Feyerabend, & M. W. Wartofsky (Eds.), Essays in Memory of Imre Lakatos (pp. 717–737). Dordrecht: Reidel.

Weber, H. (1895). Lehrbuch der Algebra. Braunschweig: Vieweg.