Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Giải thích quang phổ điện tử của cụm CoGen− (n = 4, 5) thông qua tính toán RASPT2 đa cấu hình
Tóm tắt
Các trạng thái điện tử ở mức thấp CoGen−/0 (n=4, 5) đã được nghiên cứu bằng lý thuyết hàm mật độ và phương pháp RASSCF/RASPT2 tiên tiến nhằm xác định các đặc trưng cho quang phổ điện tử của anion. Hàm BP86 đã được sử dụng để tối ưu hóa các cấu trúc hình học của các trạng thái điện tử, trong khi phương pháp RASSCF/RASPT2 được áp dụng để tính toán năng lượng điểm đơn. Với cách tiếp cận RASSCF/RASPT2, không gian hoạt động được mở rộng đến kích thước 21 orbital đối với CoGe4−/0 và 24 orbital đối với CoGe5−/0. Các trạng thái mặt đất của CoGe4−/0 được xác định là 3A″ và 2A″ của một cấu trúc hình chóp ba, trong đó nguyên tử Co nằm ở góc xích đạo của hình chóp. Năng lượng tách dọc theo các chuyển tiếp từ trạng thái mặt đất anion đến các trạng thái trung hòa 2A″, 14A″, 2A′, 24A″, 34A″, 14A′, 24A′, và 64A″ được đánh giá lần lượt là 2.29, 2.39, 2.60, 2.83, 3.17, 3.24, 3.47, và 4.00 eV. Đối với các cụm CoGe5−/0, các trạng thái mặt đất được tính toán là 1A1 và 12A2 của một cấu trúc hình lập phương. Năng lượng tách dọc của việc loại bỏ một electron từ trạng thái mặt đất anion để tạo ra các trạng thái 12A2, 12A1, 22A1, 12B1, 12B2, 42B1, 42B2, và 62A2 được ước tính lần lượt là 2.16, 2.79, 2.84, 3.06, 3.06, 3.59, 3.59, và 4.22 eV. Tất cả các đặc điểm trong quang phổ điện tử của CoGe4− và CoGe5− được giải thích dựa trên năng lượng tách electron tính toán của các trạng thái mặt đất anion.
Từ khóa
#CoGen #quang phổ điện tử #lý thuyết hàm mật độ #RASSCF #RASPT2 #khoa học vật liệu #hóa lýTài liệu tham khảo
Zhang X, Li G, Gao Z (2001) Laser ablation of Co/Ge mixtures: a new type of endohedral structure, a semiconductor cage trapping a metal atom. Rapid Commun Mass Spectrom 15(17):1573–1576. https://doi.org/10.1002/rcm.408
Li G, Zhang X, Tang Z, Gao Z (2002) Theoretical studies on the structure of the endohedral CoGe10− cluster anion. Chem Phys Lett 359(3–4):203–212. https://doi.org/10.1016/S0009-2614(02)00736-4
Deng X-J, Kong X-Y, Xu X-L, Xu H-G, Zheng W-J (2014) Structural and magnetic properties of CoGen− (n = 2 - 11) clusters: photoelectron spectroscopy and density functional calculations. ChemPhysChem 15(18):3987–3993. https://doi.org/10.1002/cphc.201402615
Kapila N, Jindal VK, Sharma H (2011) Structural, electronic and magnetic properties of Mn, co, Ni in Gen for (n = 1–13). Phys B 406(24):4612–4619. https://doi.org/10.1016/j.physb.2011.09.038
Jing Q, F-y T, Wang Y-x (2008) No quenching of magnetic moment for the GenCo (n = 1–13) clusters: first-principles calculations. J Chem Phys 128(12):124319. https://doi.org/10.1063/1.2898880
Uta M, Cioloboc D, King R (2012) Cobalt-centered ten-vertex germanium clusters: the pentagonal prism as an alternative to polyhedra predicted by the Wade–Mingos rules. Inorg Chem 51(6):3498–3504. https://doi.org/10.1021/ic202226k
Krontiras C, Georga SN, Sakkopoulos S, Vitoratos E, Salmi J (1990) The resistivity and hall coefficient of CoGe and CoGe2 thin films. J Phys Condens Matter 2(14):3323. https://doi.org/10.1088/0953-8984/2/14/016
Cho YJ, Kim CH, Kim HS, Lee WS, Park S-H, Park J, Bae SY, Kim B, Lee H, Kim J-Y (2008) Ferromagnetic Ge1−xMx (M = Mn, Fe, and Co) nanowires. Chem Mater 20(14):4694–4702. https://doi.org/10.1021/cm7035635
Park K, An C-H, Lee M, Yang C-W, Lee H-J, Kim H (2009) Microstructural evolution and electrical characteristics of Co-germanide contacts on Ge. J Electrochem Soc 156(4):H229–H232. https://doi.org/10.1149/1.3071634
Yoon H, Seo K, Bagkar N, In J, Park J, Kim J, Kim B (2009) Vertical epitaxial Co5Ge7 nanowire and nanobelt arrays on a thin graphitic layer for flexible field emission displays. Adv Mater (Weinheim, Ger) 21(48):4979–4982. https://doi.org/10.1002/adma.200901972
Jin Y, Tian Y, Kuang X, Lu C, Cabellos JL, Mondal S, Merino G (2016) Structural and electronic properties of ruthenium-doped germanium clusters. J Phys Chem C 120(15):8399–8404. https://doi.org/10.1021/acs.jpcc.6b02225
Djaadi S, Aiadi KE, Mahtout S (2018) First principles study of structural, electronic and magnetic properties of SnGen(0, ±1) (n = 1–17) clusters. J Semicond 39(4):042001. https://doi.org/10.1088/1674-4926/39/4/042001
Hou X-J, Gopakumar G, Lievens P, Nguyen MT (2007) Chromium-doped germanium clusters CrGen (n = 1–5): geometry, electronic structure, and topology of chemical bonding. J Phys Chem A 111(51):13544–13553. https://doi.org/10.1021/jp0773233
Liang X, Kong X, Lu S-J, Huang Y, Zhao J, Xu H-G, Zheng W, Zeng XC (2018) Structural evolution and magnetic properties of anionic clusters Cr2Gen (n = 3–14): photoelectron spectroscopy and density functional theory computation. J Phys Condens Matter 30(33):335501. https://doi.org/10.1088/1361-648x/aad2bf
Deng X-J, Kong X-Y, Xu H-G, Xu X-L, Feng G, Zheng W-J (2015) Photoelectron spectroscopy and density functional calculations of VGen− (n = 3-12) clusters. J Phys Chem C 119(20):11048–11055. https://doi.org/10.1021/jp511694c
Siouani C, Mahtout S, Safer S, Rabilloud F (2017) Structure, stability, and electronic and magnetic properties of VGen (n = 1–19) clusters. J Phys Chem A 121(18):3540–3554. https://doi.org/10.1021/acs.jpca.7b00881
Deng X-J, Kong X-Y, Liang X, Yang B, Xu H-G, Xu X-L, Feng G, Zheng W-J (2017) Structural and magnetic properties of FeGen−/0 (n = 3-12) clusters: mass-selected anion photoelectron spectroscopy and density functional theory calculations. J Chem Phys 147(23):234310. https://doi.org/10.1063/1.5000886
Tran VT, Tran QT (2018) The electronic structures of CoGen–/0 (n = 1–3) clusters from multiconfigurational CASSCF/CASPT2 and RASSCF/RASPT2 calculations. J Phys Chem A 122(31):6407–6415. https://doi.org/10.1021/acs.jpca.8b04846
Liang X-Q, Deng X-J, Lu S-J, Huang X-M, Zhao J-J, Xu H-G, Zheng W-J, Zeng XC (2017) Probing structural, electronic, and magnetic properties of iron-doped semiconductor clusters Fe2Gen–/0 (n = 3–12) via joint photoelectron spectroscopy and density functional study. J Phys Chem C 121(12):7037–7046. https://doi.org/10.1021/acs.jpcc.7b00943
Deng X-J, Kong X-Y, Xu X-L, Xu H-G, Zheng W-J (2014) Structural and bonding properties of small TiGen− (n = 2–6) clusters: photoelectron spectroscopy and density functional calculations. RSC Adv 4(49):25963–25968. https://doi.org/10.1039/c4ra02897j
Siouani C, Mahtout S, Rabilloud F (2019) Structure, stability, and electronic properties of niobium-germanium and tantalum-germanium clusters. J Mol Model 25(5):113. https://doi.org/10.1007/s00894-019-3988-5
Tran VT, Nguyen MT, Tran QT (2017) Computational investigation of the geometrical and electronic structures of VGen–/0 (n = 1–4) clusters by density functional theory and multiconfigurational CASSCF/CASPT2 method. J Phys Chem A 121(40):7787–7796. https://doi.org/10.1021/acs.jpca.7b08351
Pham LN, Nguyen MT (2017) Insights into geometric and electronic structures of VGe3–/0 clusters from anion photoelectron spectrum assignment. J Phys Chem A 121(37):6949–6956. https://doi.org/10.1021/acs.jpca.7b07459
Tran VT, Tran QT (2018) Spin state energetics of VGen−/0 (n = 5–7) clusters and new assignments of the anion photoelectron spectra. J Comput Chem 39(25):2103–2109. https://doi.org/10.1002/jcc.25527
Pham LN, Nguyen MT (2017) Titanium digermanium: theoretical assignment of electronic transitions underlying its anion photoelectron spectrum. J Phys Chem A 121(9):1940–1949. https://doi.org/10.1021/acs.jpca.7b00245
Sauri V, Serrano-Andrés L, Shahi ARM, Gagliardi L, Vancoillie S, Pierloot K (2011) Multiconfigurational second-order perturbation theory restricted active space (RASPT2) method for electronic excited states: a benchmark study. J Chem Theory Comput 7(1):153–168. https://doi.org/10.1021/ct100478d
Andersson K, Malmqvist PA, Roos BO, Sadlej AJ, Wolinski K (1990) Second-order perturbation theory with a CASSCF reference function. J Phys Chem 94(14):5483–5488. https://doi.org/10.1021/j100377a012
Andersson K, Malmqvist PÅ, Roos BO (1992) Second-order perturbation theory with a complete active space self-consistent field reference function. J Chem Phys 96(2):1218–1226. https://doi.org/10.1063/1.462209
Malmqvist PÅ, Pierloot K, Shahi ARM, Cramer CJ, Gagliardi L (2008) The restricted active space followed by second-order perturbation theory method: theory and application to the study of CuO2 and Cu2O2 systems. J Chem Phys 128(20):204109. https://doi.org/10.1063/1.2920188
Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys Rev A 38(6):3098–3100. https://doi.org/10.1103/PhysRevA.38.3098
Perdew JP (1986) Density-functional approximation for the correlation-energy of the inhomogeneous electron-gas. Phys Rev B 33(12):8822–8824. https://doi.org/10.1103/PhysRevB.33.8822
Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7(18):3297–3305. https://doi.org/10.1039/B508541A
Balabanov NB, Peterson KA (2005) Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc-Zn. J Chem Phys 123(6):064107. https://doi.org/10.1063/1.1998907
Wilson AK, Woon DE, Peterson KA, Dunning TH (1999) Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton. J Chem Phys 110(16):7667–7676. https://doi.org/10.1063/1.478678
Aquilante F, Lindh R, Bondo Pedersen T (2007) Unbiased auxiliary basis sets for accurate two-electron integral approximations. J Chem Phys 127(11):114107. https://doi.org/10.1063/1.2777146
Aquilante F, Malmqvist P-Å, Pedersen TB, Ghosh A, Roos BO (2008) Cholesky decomposition-based multiconfiguration second-order perturbation theory (CD-CASPT2): application to the spin-state energetics of CoIII(diiminato)(NPh). J Chem Theory Comput 4(5):694–702. https://doi.org/10.1021/ct700263h
Aquilante F, Pedersen TB, Lindh R, Roos BO, Sánchez de Merás A, Koch H (2008) Accurate ab initio density fitting for multiconfigurational self-consistent field methods. J Chem Phys 129(2):024113. https://doi.org/10.1063/1.2953696
Ishikawa Y, Vilkas MJ (2001) Relativistic quantum mechanics of many-electron systems. J Mol Struct THEOCHEM 573(1–3):139–169. https://doi.org/10.1016/S0166-1280(01)00540-1
Reiher M, Wolf A (2004) Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas-Kroll-Hess transformation up to arbitrary order. J Chem Phys 121(22):10945–10956. https://doi.org/10.1063/1.1818681
Reiher M, Wolf A (2004) Exact decoupling of the Dirac Hamiltonian. I. General theory. J Chem Phys 121(5):2037–2047. https://doi.org/10.1063/1.1768160
Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, Van Dam HJJ, Wang D, Nieplocha J, Apra E, Windus TL, de Jong WA (2010) NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput Phys Commun 181(9):1477–1489. https://doi.org/10.1016/j.cpc.2010.04.018
Fdez Galván I, Vacher M, Alavi A, Angeli C, Aquilante F, Autschbach J, Bao JJ, Bokarev SI, Bogdanov NA, Carlson RK, Chibotaru LF, Creutzberg J, Dattani N, Delcey MG, Dong SS, Dreuw A, Freitag L, Frutos LM, Gagliardi L, Gendron F, Giussani A, González L, Grell G, Guo M, Hoyer CE, Johansson M, Keller S, Knecht S, Kovačević G, Källman E, Li Manni G, Lundberg M, Ma Y, Mai S, Malhado JP, Malmqvist PÅ, Marquetand P, Mewes SA, Norell J, Olivucci M, Oppel M, Phung QM, Pierloot K, Plasser F, Reiher M, Sand AM, Schapiro I, Sharma P, Stein CJ, Sørensen LK, Truhlar DG, Ugandi M, Ungur L, Valentini A, Vancoillie S, Veryazov V, Weser O, Wesołowski TA, Widmark P-O, Wouters S, Zech A, Zobel JP, Lindh R (2019) OpenMolcas: from source code to insight. J Chem Theory Comput 15(11):5925–5964. https://doi.org/10.1021/acs.jctc.9b00532
Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789. https://doi.org/10.1103/PhysRevB.37.785
Becke AD (1993) Density functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652. https://doi.org/10.1063/1.464913