Interpretable sparse SIR for functional data

Victor Picheny1, Rémi Servien2, Nathalie Vialaneix1
1MIAT, Université de Toulouse, INRA, Castanet Tolosan, France
2INTHERES, Université de Toulouse, INRA, ENVT, Toulouse, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Allen, R.G., Pereira, L.S., Raes, D., Smith, M.: Crop evapotranspiration-guidelines for computing crop water requirements-fao irrigation and drainage paper 56. FAO, Rome 300(9), D05109 (1998)

Aneiros, G., Vieu, P.: Variable in infinite-dimensional problems. Stat. Probab. Lett. 94, 12–20 (2014)

Bernard-Michel, C., Gardes, L., Girard, S.: A note on sliced inverse regression with regularizations. Biometrics 64(3), 982–986 (2008). https://doi.org/10.1111/j.1541-0420.2008.01080.x

Bettonvil, B.: Factor screening by sequential bifurcation. Commun. Stat. Simul. Comput. 24(1), 165–185 (1995)

Biau, G., Bunea, F., Wegkamp, M.: Functional classification in Hilbert spaces. IEEE Trans. Inf. Theory 51, 2163–2172 (2005)

Borggaard, C., Thodberg, H.: Optimal minimal neural interpretation of spectra. Anal. Chem. 64(5), 545–551 (1992)

Bura, A., Cook, R.: Extending sliced inverse regression: the weighted chi-squared test. J. Am. Stat. Assoc. 96(455), 996–1003 (2001)

Bura, E., Yang, J.: Dimension estimation in sufficient dimension reduction: a unifying approach. J. Multivar. Anal. 102(1), 130–142 (2011). https://doi.org/10.1016/j.jmva.2010.08.007

Casadebaig, P., Guilioni, L., Lecoeur, J., Christophe, A., Champolivier, L., Debaeke, P.: Sunflo, a model to simulate genotype-specific performance of the sunflower crop in contrasting environments. Agric. For. Meteorol. 151(2), 163–178 (2011)

Chen, C., Li, K.: Can SIR be as popular as multiple linear regression? Stat. Sin. 8, 289–316 (1998)

Chen, S., Donoho, D., Saunders, M.: Atomic decomposition by basis puirsuit. SIAM J. Sci. Comput. 20(1), 33–61 (2015)

Cook, R.: Testing predictor contributions in sufficient dimension reduction. Ann. Stat. 32(3), 1061–1092 (2004)

Cook, R., Yin, X.: Dimension reduction and visualization in discriminant analysis. Aust. N. Z. J. Stat. 43(2), 147–199 (2001)

Coudret, R., Liquet, B., Saracco, J.: Comparison of sliced inverse regression aproaches for undetermined cases. J. Soc. Fr. Stat. 155(2), 72–96 (2014). http://journal-sfds.fr/index.php/J-SFdS/article/view/278

Dauxois, J., Ferré, L., Yao, A.: Un modèle semi-paramétrique pour variable aléatoire hilbertienne. Comptes Rendus Math. Acad. Sci. Paris 327(I), 947–952 (2001). https://doi.org/10.1016/S0764-4442(01)02163-2

Fauvel, M., Deschene, C., Zullo, A., Ferraty, F.: Fast forward feature selection of hyperspectral images for classification with Gaussian mixture models. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(6), 2824–2831 (2015). https://doi.org/10.1109/JSTARS.2015.2441771

Ferraty, F., Hall, P.: An algorithm for nonlinear, nonparametric model choice and prediction. J. Comput. Graph. Stat. 24(3), 695–714 (2015). https://doi.org/10.1080/10618600.2014.936605

Ferraty, F., Hall, P., Vieu, P.: Most-predictive design points for functional data predictors. Biometrika 97(4), 807–824 (2010). https://doi.org/10.1093/biomet/asq058

Ferré, L.: Determining the dimension in sliced inverse regression and related methods. J. Am. Stat. Assoc. 93(441), 132–140 (1998). https://doi.org/10.1080/01621459.1998.10474095

Ferré, L., Villa, N.: Multi-layer perceptron with functional inputs: an inverse regression approach. Scand. J. Stat. 33(4), 807–823 (2006). https://doi.org/10.1111/j.1467-9469.2006.00496.x

Ferré, L., Yao, A.: Functional sliced inverse regression analysis. Statistics 37(6), 475–488 (2003)

Fraiman, R., Gimenez, Y., Svarc, M.: Feature selection for functional data. J. Multivar. Anal. 146, 191–208 (2016). https://doi.org/10.1016/j.jmva.2015.09.006

Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(1), 1–22 (2010)

Fromont, M., Tuleau, C.: Functional classification with margin conditions. In: Lugosi, G., Simon, H. (eds.) Proceedings of the 19th Annual Conference on Learning Theory (COLT 2006), Springer (Berlin/Heidelberg), Pittsburgh, PA, USA, Lecture Notes in Computer Science, vol. 4005, pp. 94–108 (2006). https://doi.org/10.1007/11776420_10

Fruth, J., Roustant, O., Kuhnt, S.: Sequential designs for sensitivity analysis of functional inputs in computer experiments. Reliab. Eng. Syst. Saf. 134, 260–267 (2015)

Golub, T., Slonim, D., Wahba, G.: Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21(2), 215–223 (1979). https://doi.org/10.2307/1268518

Grollemund, P., Abraham, C., Baragatti, M., Pudlo, P.: Bayesian functional linear regression with sparse step functions. Preprint (2018). arXiv:1604.08403

Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Data Mining, Inference and Prediction. Springer, New York (2001)

Hernández, N., Biscay, R., Villa-Vialaneix, N., Talavera, I.: A non parametric approach for calibration with functional data. Stat. Sin. 25, 1547–1566 (2015). https://doi.org/10.5705/ss.2013.242

James, G., Wang, J., Zhu, J.: Functional linear regression that’s interpretable. Ann. Stat. 37(5A), 2083–2108 (2009). https://doi.org/10.1214/08-AOS641

Kneip, A., Poß, D., Sarda, P.: Functional linear regression with points of impact. Ann. Stat. 44(1), 1–30 (2016). https://doi.org/10.1214/15-AOS1323

Li, K.: Sliced inverse regression for dimension reduction. J. Am. Stat. Assoc. 86(414), 316–342 (1991). http://www.jstor.org/stable/2290563

Li, L., Nachtsheim, C.: Sparse sliced inverse regression. Technometrics 48(4), 503–510 (2008)

Li, L., Yin, X.: Sliced inverse regression with regularizations. Biometrics 64(1), 124–131 (2008). https://doi.org/10.1111/j.1541-0420.2007.00836.x

Lin, Q., Zhao, Z., Liu, J.: On consistency and sparsity for sliced inverse regression in high dimensions. Preprint (2018). arXiv:1507.03895

Liquet, B., Saracco, J.: A graphical tool for selecting the number of slices and the dimension of the model in SIR and SAVE approaches. Comput. Stat. 27(1), 103–125 (2012)

Matsui, H., Konishi, S.: Variable selection for functional regression models via the $$l_1$$ l 1 regularization. Comput. Stat. Data Anal. 55(12), 3304–3310 (2011). https://doi.org/10.1016/j.csda.2011.06.016

McKeague, I., Sen, B.: Fractals with point impact in functional linear regression. Ann. Stat. 38(4), 2559–2586 (2010). https://doi.org/10.1214/10-AOS791

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F.: e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. R package version 1.6-7 (2015)

Ni, L., Cook, D., Tsai, C.: A note on shrinkage sliced inverse regression. Biometrika 92(1), 242–247 (2005)

Park, A., Aston, J., Ferraty, F.: Stable and predictive functional domain selection with application to brain images. Preprint (2016). arXiv:1606.02186

Portier, F., Delyon, B.: Bootstrap testing of the rank of a matrix via least-square constrained estimation. J. Am. Stat. Assoc. 109(505), 160–172 (2014). https://doi.org/10.1080/01621459.2013.847841

Rasmussen, C., Williams, C.: Gaussian Processes for Machine Learning. The MIT Press, Cambridge (2006)

Schott, J.: Determining the dimensionality in sliced inverse regression. J. Am. Stat. Assoc. 89(425), 141–148 (1994)

Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: A sparse-group lasso. J. Comput. Graph. Stat. 22, 231–245 (2013). https://doi.org/10.1080/10618600.2012.681250

Tibshirani, R., Saunders, G., Rosset, S., Zhu, J., Knight, J.: Sparsity and smoothness via the fused lasso. J. R. Stat. Soc. B 67(1), 91–108 (2005)

Zhao, Y., Ogden, R., Reiss, P.: Wavelet-based LASSO in functional linear regression. J. Comput. Graph. Stat. 21(3), 600–617 (2012). https://doi.org/10.1080/10618600.2012.679241

Zhu, L., Miao, B., Peng, H.: On sliced inverse regression with high-dimensional covariates. J. Am. Stat. Assoc. 101(474), 360–643 (2006)