Interpolation of Beilinson–Kato elements and p-adic L-functions
Tóm tắt
Từ khóa
Tài liệu tham khảo
Yvette Amice and Jacques Vélu, Distributions p-adiques associées aux séries de Hecke, In Journées Arithmétiques de Bordeaux (Conf., Univ. Bordeaux, Bordeaux, 1974), no. 24–25. Astérisque, pp. 119–131, 1975.
Fabrizio Andreatta, Adrian Iovita, and Glenn Stevens, Overconvergent Eichler-Shimura isomorphisms, J. Inst. Math. Jussieu 14 (2015), no. 2, 221–274.
Avner Ash and Glenn Stevens, Modular forms in characteristic l and special values of their L-functions, Duke Math. J. 53 (1986), no. 3, 849–868.
Avner Ash and Glenn Stevens, p-Adic deformations of arithmetic cohomology, http://math.bu.edu/people/ghs/preprints/Ash-Stevens-02-08.pdf, 2008.
Joël Bellaïche, Computation of the critical p-adic L-functions of CM modular forms, available at http://people.brandeis.edu/~jbellaic/preprint/CML-functions4.pdf.
Denis Benois, Trivial zeros of p-adic L-functions at near-central points, J. Inst. Math. Jussieu 13 (2014), no. 3, 561–598.
Denis Benois and Laurent Berger, Théorie d’Iwasawa des représentations cristallines. II, Comment. Math. Helv. 83 (2008), no. 3, 603–677.
Denis Benois and Kâzım Büyükboduk, Arithmetic of critical p-adic L-functions (in progress).
Denis Benois and Kâzım Büyükboduk, On the exceptional zeros of p-non-ordinary p-adic L-functions and a conjecture of Perrin-Riou, preprint, 1510.01915.
Denis Benois and Stéphane Horte, On extra zeros of p-adic Rankin–Selberg L-functions, preprint, arXiv:2009.01096, 2020
Laurent Berger, Bloch and Kato’s exponential map: three explicit formulas, Doc. Math. Kazuya Kato’s fiftieth birthday, pp. 99–129, 2003.
Laurent Berger and Pierre Colmez, Familles de représentations de de Rham et monodromie p-adique, In Représentations p-adiques de groupes p-adiques. I. Représentations galoisiennes et$$(\phi ,\Gamma )$$-modules, no. 319. Astérisque, pp. 303–337, 2008.
Kâzım Büyükboduk, Robert Pollack, and Shu Sasaki, p-adic Gross–Zagier formula at critical slope and a conjecture of Perrin-Riou, preprint, 1811.08216.
Massimo Bertolini, Marco Seveso, and Rodolfo Venerucci, Reciprocity Laws For Balanced Diagonal Classes, preprint, 2020.
Gaëtan Chenevier, Une correspondance de Jacquet-Langlands p-adique, Duke Math. J. 126 (2005), no. 1, 161–194.
Jens Franke and Joachim Schwermer, A decomposition of spaces of automorphic forms, and the Eisenstein cohomology of arithmetic groups, Math. Ann. 311 (1998), no. 4, 765–790.
David Hansen, Iwasawa theory of overconvergent modular forms, I: Critical p-adic L-functions, http://www.davidrenshawhansen.com/bigzetaone.pdf, 2016.
G. Harder, On the cohomology of discrete arithmetically defined groups, Discrete subgroups of Lie groups and applications to moduli (Internat. Colloq., Bombay, 1973), 1975, pp. 129–160.
G. Harder, Eisenstein cohomology of arithmetic groups. The case$${{\rm GL}}_2$$, Invent. Math. 89 (1987), no. 1, 37–118.
H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic forms. II, Amer. J. Math. 103 (1981), no. 4, 777–815.
H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic representations. I, Amer. J. Math. 103 (1981), no. 3, 499–558.
Kazuya Kato, p-adic Hodge theory and values of zeta functions of modular forms, Astérisque (2004), no. 295, ix, 117–290, Cohomologies $$p$$-adiques et applications arithmétiques. III.
Guido Kings, Eisenstein classes, elliptic Soulé elements and the$$\ell $$-adic elliptic polylogarithm, The Bloch-Kato conjecture for the Riemann zeta function, London Math. Soc. Lecture Note Ser., vol. 418, Cambridge Univ. Press, Cambridge, 2015, pp. 239–296.
Guido Kings, David Loeffler, and Sarah Livia Zerbes, Rankin-Eisenstein classes and explicit reciprocity laws, Camb. J. Math. 5 (2017), no. 1, 1–122.
Kiran S. Kedlaya, Jonathan Pottharst, and Liang Xiao, Cohomology of arithmetic families of$$(\varphi ,\Gamma )$$-modules, J. Amer. Math. Soc. 27 (2014), no. 4, 1043–1115.
David Loeffler and Sarah Livia Zerbes, Rankin-Eisenstein classes in Coleman families, Res. Math. Sci. 3 (2016), Paper No. 29, 1–53.
Kentaro Nakamura, Iwasawa theory of de Rham$$(\varphi ,\Gamma )$$-modules over the Robba ring, J. Inst. Math. Jussieu 13 (2014), no. 1, 65–118.
Kentaro Nakamura, A generalization of Kato’s local$$\varepsilon $$-conjecture for$$(\varphi ,\Gamma )$$-modules over the Robba ring, Algebra Number Theory 11 (2017), no. 2, 319–404.
Tadashi Ochiai, Iwasawa main conjecture for p-adic families of elliptic modular cuspforms, Preprint, 1802.06427, 2018.
Jonathan Pottharst, Cyclotomic Iwasawa theory of motives, 2012, preprint available at http://vbrt.org/writings/cyc.pdf.
Bernadette Perrin-Riou, Théorie d’Iwasawa des représentations p-adiques sur un corps local, Invent. Math. 115 (1994), no. 1, 81–161.
Robert Pollack and Glenn Stevens, Critical slope p-adic L-functions, J. Lond. Math. Soc. (2) 87 (2013), no. 2, 428–452.
Takeshi Saito, Weight-monodromy conjecture for l-adic representations associated to modular forms. A supplement to: "Modular forms and p-adic Hodge theory" [Invent. Math. 129 (1997), no. 3, 607-620
MR1465337 (98g:11060)], The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), NATO Sci. Ser. C Math. Phys. Sci., vol. 548, Kluwer Acad. Publ., Dordrecht, 2000, pp. 427-431.
M. M. Višik, Nonarchimedean measures associated with Dirichlet series, Mat. Sb. (N.S.) 99(141) (1976), no. 2, 248–260, 296.