Interplay between O2 and SnO2: Oxygen Ionosorption and Spectroscopic Evidence for Adsorbed Oxygen

ChemPhysChem - Tập 7 Số 10 - Trang 2041-2052 - 2006
Aleksander Gurlo1,2
1Current address: Institute of Materials Science, Dispersive Solids Darmstadt University of Technology Petersenstr. 23, 64287 Darmstadt, Germany, Fax: (+49) 6151‐166‐346
2Institute of Physical and Theoretical Chemistry, University of Tuebingen Auf der Morgenstelle 15, 72076 Tübingen, Germany

Tóm tắt

AbstractTin dioxide is the most commonly used material in commercial gas sensors based on semiconducting metal oxides. Despite intensive efforts, the mechanism responsible for gas‐sensing effects on SnO2 is not fully understood. The key step is the understanding of the electronic response of SnO2 in the presence of background oxygen. For a long time, oxygen interaction with SnO2 has been treated within the framework of the “ionosorption theory”. The adsorbed oxygen species have been regarded as free oxygen ions electrostatically stabilized on the surface (with no local chemical bond formation). A contradiction, however, arises when connecting this scenario to spectroscopic findings. Despite trying for a long time, there has not been any convincing spectroscopic evidence for “ionosorbed” oxygen species. Neither superoxide ions O2, nor charged atomic oxygen O, nor peroxide ions O22− have been observed on SnO2 under the real working conditions of sensors. Moreover, several findings show that the superoxide ion does not undergo transformations into charged atomic oxygen at the surface, and represents a dead‐end form of low‐temperature oxygen adsorption on reduced metal oxide.

Từ khóa


Tài liệu tham khảo

10.1021/ac60191a001

N.Taguchi U.S. Patent. 3 631 436 1971.

Madou M. J., 1989, Chemical Sensing with Solid State Devices

Williams D. E., 1987, Solid State Gas Sensors, 71

Ihokura K., 1994, Stannic Oxide Gas Sensors, Principles and Applications

10.1023/A:1014405811371

10.1088/0953-8984/15/20/201

Gurlo A., 2006, Metal Oxides: Chemistry and Applications, 683

10.1016/j.snb.2004.11.020

10.1023/A:1027402430153

10.1080/10408430490888977

10.1016/j.snb.2004.10.006

10.1002/smll.200500261

10.1016/j.progsurf.2005.09.002

10.1002/ange.19550670702

10.1016/S0360-0564(08)60528-3

10.1016/S0360-0564(08)60529-5

Hauffe K., 1966, Reactions in and on Solid Materials from Monographs in Inorganic and General Chemistry

Hauffe K., 1973, Adsorption. Eine Einführung in die Probleme der Adsorption

10.1007/978-1-4615-8007-2

10.1016/S0360-0564(08)60453-8

10.1016/S0360-0564(08)60439-3

Che M., 1984, Rev. Chim. Miner., 21, 669

Bielanski A., 1991, Oxygen in Catalysis

10.1002/0470867981

10.1016/j.progsolidstchem.2004.08.001

10.1007/s11244-005-3825-1

10.1002/adfm.200500087

10.1021/jp993998x

10.1063/1.1519946

10.1016/S0925-4005(03)00212-0

Many A., 1971, Semiconductor Surfaces

10.1126/science.1093425

10.1063/1.1699292

10.1149/1.2133090

T. Sahm A. Gurlo N. Barsan U. Weimar Sens. Actuators B DOI: in press.

10.1143/JJAP.14.779

10.1016/S0925-4005(99)00278-6

10.1021/jp0271054

10.1063/1.2001144

10.1016/S0925-4005(00)00564-5

Figurovskaya E. N., 1965, Dokl. Akad. Nauk SSSR, 161, 1142

10.1002/zfch.19670071002

10.1103/PhysRevB.28.3427

10.1007/BF01340692

10.1116/1.569757

10.1143/JJAP.38.1534

10.1006/jcat.1993.1108

10.1016/0079-6816(85)90004-8

10.1063/1.1794853

10.1007/978-3-642-83020-4

10.1039/f19878301323

10.1039/f19898501921

Willett M. J., 1991, Techniques and Mechanism in Gas Sensing, 61

10.1016/S1381-1169(00)00466-0

10.1007/s002160051490

10.1016/S0039-6028(87)81174-3

Wolkenstein T., 1987, Electronic Processes on the Surface of Semiconductors During Chemisorption

10.1016/0925-4005(93)85183-B

10.1016/S0925-4005(96)01926-0

10.1016/S0925-4005(98)00033-1

Djerassi C., 2001, Oxygen. A Play in 2 Acts

10.1063/1.1447907

10.1007/s00775-005-0026-0

10.1021/cr60283a002

10.1021/ar50101a002

10.1007/BFb0111572

10.1021/cr00027a006

Allen H., Comprehensive Coordination Chemistry,, 315

10.1016/B0-08-043748-6/08171-8

10.1016/B0-08-043748-6/01161-0

Massey A. G., 2000, Main Group Chemistry

10.1023/B:CATS.0000008164.21582.92

10.1016/0042-207X(92)90350-6

10.1039/b002039g

10.1016/S0009-2614(99)01365-2

10.1016/S0039602802026006

10.1021/jp011638f

10.1016/S0039-6028(01)01372-3

10.1016/S0039-6028(02)01542-X

10.1016/j.susc.2005.01.004

10.1016/S0039-6028(98)00446-4

10.1002/(SICI)1097-461X(1998)69:5<669::AID-QUA5>3.0.CO;2-T

10.1016/0039-6028(79)90411-4

Joly J. P., 1986, Bull. Soc. Chim. Fr., 11

10.1021/cm001228o

10.1007/BF03170525

10.1116/1.570389

10.1007/BF02216890

Davydov A. A., 1992, Zh. Prikl. Spektrosk., 56, 597

10.1209/epl/i2003-10044-0

Gillot B., 1976, J. Chim. Phys. Phys.–Chim. Biol., 73, 19, 10.1051/jcp/1976730019

10.1021/j100513a006

10.1016/j.apsusc.2004.05.187

10.1016/j.tsf.2005.04.012

10.1021/j100666a014

10.1088/0022-3719/15/21/001

10.1103/PhysRevB.64.073102

10.1039/b006999j

10.1163/156856703322148991

10.1515/zna-1981-0305

Anufrienko V. F., 1973, Dokl. Akad. Nauk SSSR, 209, 372

10.1007/BF02065841

Bobyshev A. A., 1985, Khim. Fiz., 4, 1254

10.1039/ft9938903711

10.1143/JJAP.33.6680

10.1016/j.susc.2005.01.004

10.1063/1.1639946

10.1023/B:CATS.0000008164.21582.92

10.1016/S0925-4005(03)00410-6

10.1007/s002160051490

10.1016/j.jssc.2005.07.019

10.1016/S0925-4005(03)00212-0

10.1016/0584-8539(94)01216-4

10.1039/f19726801169

10.1080/01614947408071859

10.1163/156856702320267118

10.1063/1.1681325

10.1016/0021-9517(71)90139-4

Che M., 1968, Bull. Soc. Chim. Fr., 4791

Canevali C., 1997, Conf. Proc. Ital. Phys. Soc., 54, 73

Hauser C., 1972, Helv. Phys. Acta, 45, 683

10.1016/0925-4005(93)01048-9

10.1016/S0925-4005(97)00238-4

10.1016/S0925-4005(98)00024-0

10.1016/S0925-4005(01)00795-X

10.1016/0250-6874(89)87067-2

10.1021/jp0311254

10.1039/f19787402597

10.1021/jp990655q

10.1103/PhysRevLett.80.5224

10.1002/cphc.200300835