Interplay between Microscopic Structures and Macroscopic Viscoelastic Properties of Polyampholyte Gels

Yuan Xue, Yiming Yang, Jia Di

Tóm tắt

Từ khóa


Tài liệu tham khảo

Yuk, H.; Varela, C. E.; Nabzdyk, C. S.; Mao, X.; Padera, R. F.; Roche, E. T.; Zhao, X. Dry double-sided tape for adhesion of wet tissues and devices. Nature 2019, 575, 169–174.

Hu, X.; Hao, L.; Wang, H.; Yang, X.; Zhang, G.; Wang, G.; Zhang, X. Hydrogel contact lens for extended delivery of ophthalmic drugs. Int. J. Polym. Sci. 2011, 2011, 1–9.

Hamidi, M.; Azadi, A.; Rafiei, P. Hydrogel nanoparticles in drug delivery. Adv. Drug Deliv. Rev. 2008, 60, 1638–1649.

Drury, J. L.; Mooney, D. J. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 2003, 24, 4337–4351.

Zhang, Y. S.; Khademhosseini, A. Advances in engineering hydrogels. Science 2017, 356, eaaf3627.

Gong, J. P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y. Doublenetwork hydrogels with extremely high mechanical strength. Adv. Mater. 2003, 15, 1155–1158.

Jia, D.; Muthukumar, M. Interplay between microscopic and macroscopic properties of charged hydrogels. Macromolecules 2020, 53, 90–101.

Jia, D.; Muthukumar M. Theory of charged gels: swelling, elasticity, and dynamics. Gels 2021, 7, 49.

Raia, N. R.; Jia, D.; Ghezzi, C. E.; Muthukumar, M.; Kaplan, D. L. Characterization of silk-hyaluronic acid composite hydrogels towards vitreous humor substitutes. Biomaterials 2020, 233, 119729.

Huang, Y.; Xiao, L.; Zhou, J.; Liu, T.; Yan, Y.; Long, S.; Li, X. Strong tough polyampholyte hydrogels via the synergistic effect of ionic and metal-ligand bonds. Adv. Funct. Mater. 2021, 31, 2103917.

Lee, H. H.; Kim, Y. W.; Woo, J.; Park, H.; Hur, K.; Suo, Z.; Sun, J. Y. Fast healing of ionic bonds in tough hydrogels under an acoustic excitation. Extreme Mech. Lett. 2019, 33, 100572.

Zhang, Z.; Liu, J.; Li, S.; Gao, K.; Ganesan, V.; Zhang, L. Constructing sacrificial multiple networks to toughen elastomer. Macromolecules 2019, 52, 4154–4168.

Yu, W. W.; Xu, W. Z.; Wei, Y. C.; Liao, S.; Luo, M. C. Mechanically robust elastomers enabled by a facile interfacial interactions-driven sacrificial network. Macromol. Rapid Commun. 2021, 42, 2100509.

You, Y.; Yang, J.; Zheng, Q.; Wu, N.; Lv, Z.; Jiang, Z. Ultra-stretchable hydrogels with hierarchical hydrogen bonds. Sci. Rep. 2020, 10, 11727.

Creton, C. 50th Anniversary perspective: networks and gels: soft but dynamic and tough. Macromolecules 2017, 50, 8297–8316.

Wang, W.; Zhang, Y.; Liu, W. Bioinspired fabrication of high strength hydrogels from non-covalent interactions. Prog. Polym. Sci. 2017, 71, 1–25.

Sun, T. L.; Kurokawa, T.; Kuroda, S.; Ihsan, A. B.; Akasaki, T.; Sato, K.; Haque, M. A.; Nakajima, T.; Gong, J. P. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater. 2013, 12, 932–937.

Luo, F.; Sun, T. L.; Nakajima, T.; Kurokawa, T.; Zhao, Y.; Sato, K.; Ihsan, A. B.; Li, X.; Guo, H.; Gong, J. P. Oppositely charged polyelectrolytes form tough, self-healing, and rebuildable hydrogels. Adv. Mater. 2015, 27, 2722–2727.

Zhu, F.; Cheng, L.; Yin, J.; Wu, Z. L.; Qian, J.; Fu, J.; Zheng, Q. 3D printing of ultratough polyion complex hydrogels. ACS Appl. Mater. Interfaces. 2016, 8, 31304–31310.

Hwang, J.; Cha, Y.; Ramos, L.; Zhu, T.; Buzoglu Kurnaz, L.; Tang, C. Tough antibacterial metallopolymer double-network hydrogels via dual polymerization. Chem. Mater. 2022, 34, 5663–5672.

Guo, G.; Sun, J.; Wu, Y.; Wang, J.; Zou, L. Y.; Huang, J. J.; Ren, K. F.; Liu, C. M.; Wu, Z. L.; Zheng, Q.; Qian, J. Tough complex hydrogels transformed from highly swollen polyelectrolyte hydrogels based on Cu2+ coordination with anti-bacterial properties. Mater. Chem. B 2022, 10, 6414–6424.

Fang, L.; Hu, J.; Zhang, C. W.; Wei, J.; Yu, H. C.; Zheng, S. Y.; Wu, Z. L.; Zheng, Q. Facile synthesis of tough metallosupramolecular hydrogels by using phosphates as temporary ligands of ferric ions to avoid inhibition of polymerization. J. Polym. Sci. 2022, 60, 2280–2288.

Jia, D.; Muthukumar, M. Electrostatically driven topological freezing of polymer diffusion at intermediate confinements. Phys. Rev. Lett. 2021, 126, 057802.

Zou, X.; Kui, X.; Zhang, R.; Zhang, Y.; Wang, X.; Wu, Q.; Chen, T.; Sun, P. Viscoelasticity and structures in chemically and physically dual-cross-linked hydrogels: insights from rheology and proton multiple-quantum nmr spectroscopy. Macromolecules 2017, 50, 9340–9352.

Toleutay, G.; Su, E.; Kudaibergenov, S.; Okay, O. Highly stretchable and thermally healable polyampholyte hydrogels via hydrophobic modification. Colloid. Polym. Sci. 2020, 298, 273–284.

Haag SL.; Bernards MT. Polyampholyte hydrogels in biomedical applications. Gels 2017, 3, 41.

Roy, C. K.; Guo, H. L.; Sun, T. L.; Ihsan, A. B.; Kurokawa, T.; Takahata, M.; Nonoyama, T.; Nakajima, T.; Gong, J. P. Self-adjustable adhesion of polyampholyte hydrogels. Adv. Mater. 2015, 27, 7344–7348.

Rao, P.; Sun, T. L.; Chen, L.; Takahashi, R.; Shinohara, G.; Guo, H.; King, D. R.; Kurokawa, T.; Gong, J. P. Tough hydrogels with fast, strong, and reversible underwater adhesion based on a multiscale design. Adv. Mater. 2018, 30, 1801884.

Li, X.; Gong, J. P. Role of dynamic bonds on fatigue threshold of tough hydrogels. Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e2200678119.

Li, X.; Luo, F.; Sun, T. L.; Cui, K.; Watanabe, R.; Nakajima, T.; Gong, J. P. Effect of salt on dynamic mechanical behaviors of polyampholyte hydrogels. Macromolecules 2022, 56, 535–544.

Cui, K.; Ye, Y. N.; Sun, T. L.; Yu, C.; Li, X.; Kurokawa, T.; Gong, J. P. Phase separation behavior in tough and self-healing polyampholyte hydrogels. Macromolecules 2020, 53, 5116–5126.

Li, X.; Cui, K.; Kurokawa, T.; Ye, Y. N.; Sun, T. L.; Yu, C.; Creton, C.; Gong, J. P. Effect of mesoscale phase contrast on fatigue-delaying behavior of self-healing hydrogels. Sci. Adv. 2021, 7, eabe8210.

Li, X.; Cui, K.; Sun, T. L.; Meng, L.; Yu, C.; Li, L.; Creton, C.; Kurokawa, T.; Gong, J. P. Mesoscale bicontinuous networks in self-healing hydrogels delay fatigue fracture. Proc. Natl. Acad. Sci. U. S. A. 2022, 117, 7606–7612.

Tavares, L.; Noreña, C. P. Z. Characterization of rheological properties of complex coacervates composed by whey protein isolate, chitosan and garlic essential oil. J. Food Meas. Charact. 2022, 16, 295–306.

Choi, J.; Rubner, M. F. Influence of the degree of ionization on weak polyelectrolyte multilayer assembly. Macromolecules 2005, 38, 116–124.

Flory P. J. Principles of Polymer Chemistry. Cornell University Press, 1953.

Morozova, S.; Muthukumar, M. Elasticity at swelling equilibrium of ultrasoft polyelectrolyte gels: comparisons of theory and experiments. Macromolecules 2017, 50, 2456–2466.

Shibayama, M.; Tanaka, T. Volume phase transition and related phenomena of polymer gels., in Responsive Gels: Volume Transitions I. Advances in Polymer Science, Vol. 109, Ed. by Dušek, K., Springer, Berlin, Heidelberg, 2005, p. 1–62.

Porcel, C. H.; Schlenoff, J. B.;. Compact polyelectrolyte complexes: “saloplastic” candidates for biomaterials. Biomacromolecules 2009, 10, 2968–2975.

Zhang, Z.; Chen, Q.; Colby, R. H. Dynamics of associative polymers. Soft Matter 2018, 14, 2961–2977.