Interocular symmetry of the peripapillary choroidal thickness and retinal nerve fibre layer thickness in healthy adults with isometropia
Tóm tắt
The aim of this study was to determine the interocular differences in the peripapillary retinal nerve fibre layer (RNFL), peripapillary choroidal thickness (PCT) and subfoveal choroidal thickness (SFCT) in healthy adults with isometropia, using enhanced depth imaging optical coherence tomography (EDI SD-OCT). One hundred healthy Chinese adults with spherical equivalents of ≤ ±3 dioptres and interocular differences of <0.5 dioptres were prospectively enrolled in this study. They underwent RNFL and PCT measurements via EDI SD-OCT, with a 3.4 mm scan circle centred on the optic nerve head. Subfoveal choroidal thickness (SFCT) measurements were also taken with a horizontal line scan centred on the macula. Right and left eyes were compared by a paired t-test, and the interocular differences were calculated. The agreement and correlations of the RNFLs, PCTs and SFCTs between the right and left eyes were analysed. Eighty-six subjects (172 eyes) were included in the final analysis, consisting of 44 (51.6 %) males and 42 (48.8 %) females; 55 (63.9 %) had emmetropia and 33 (36.1 %) had ametropia. The RNFL was statistically significantly thicker in the right eyes when compared to the left eyes in the temporal quadrant, and thinner on average in the nasal superior quadrant (p < 0.05). However, the differences in the choroidal thicknesses in all of the quadrants between the right and left eyes were not statistically significant. The tolerance limits of the average RNFL were −21.1 μm and 7.1 μm, and the mean and standard deviation of the interocular difference in the average PCT was −2.2 ± 24.2 μm. The RNFLs and PCTs in all of the locations in the right eyes were significantly correlated with those in the left eyes. However, no significant associations between the age, sex, interocular asymmetry of spherical the equivalent or interocular differences in the RNFL and PCT were detected. The PCT did not differ significantly between the right and left eyes, although interocular asymmetry of the RNFL existed in this Chinese population with isometropia.
Tài liệu tham khảo
Li H, Healey PR, Tariq YM, Teber E, Mitchell P. Symmetry of optic nerve head parameters measured by the heidelberg retina tomograph 3 in healthy eyes: the Blue Mountains Eye study. Am J Ophthalmol. 2013;155:518–23.
Hawker MJ, Vernon SA, Ainsworth G, Hillman JG, MacNab HK, Dua HS. Asymmetry in optic disc morphometry as measured by heidelberg retina tomography in a normal elderly population: the Bridlington Eye Assessment Project. Invest Ophthalmol Vis Sci. 2005;46:4153–8.
Hollo G. Intraocular and interocular symmetry in normal retinal capillary perfusion. J Glaucoma. 2001;10:440–1.
Gangnon RE, Lee KE, Klein BE, Iyengar SK, Sivakumaran TA, Klein R. Severity of age-related macular degeneration in 1 eye and the incidence and progression of age-related macular degeneration in the fellow eye: the Beaver Dam Eye Study. JAMA Ophthalmol. 2015;133:125–32.
Wang W, Zhang X. Choroidal thickness and primary open-angle glaucoma: a cross-sectional study and meta-analysis. Invest Ophthalmol Vis Sci. 2014;55:6007–14.
Zhang X, Wang W, Aung T, Jonas JB, Wang N. Choroidal physiology and primary angle closure disease. Surv Ophthalmol. 2015;60:547–56.
Spaide RF, Koizumi H, Pozzoni MC. Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol. 2008;146:496–500.
Hong SW, Lee SB, Jee DH, Ahn MD. Interocular retinal nerve fiber layer thickness difference in normal adults. PLoS One. 2015;10:e116313.
Lee SY, Jeoung JW, Park KH, Kim DM. Macular ganglion cell imaging study: interocular symmetry of ganglion cell-inner plexiform layer thickness in normal healthy eyes. Am J Ophthalmol. 2015;159:315–23.
Dalgliesh JD, Tariq YM, Burlutsky G, Mitchell P. Symmetry of retinal parameters measured by spectral-domain OCT in normal young adults. J Glaucoma. 2015;24:20–4.
Ruiz-Medrano J, Flores-Moreno I, Pena-Garcia P, Montero JA, Duker JS, Ruiz-Moreno JM. Asymmetry in macular choroidal thickness profile between both eyes in a healthy population measured by swept-source optical coherence tomography. Retina. 2015;35:2067–73.
Al-Haddad C, El CL, Antonios R, El-Dairi M, Noureddin B. Interocular symmetry in macular choroidal thickness in children. J Ophthalmol. 2014;2014:472391.
Chen FK, Yeoh J, Rahman W, Patel PJ, Tufail A, Da CL. Topographic variation and interocular symmetry of macular choroidal thickness using enhanced depth imaging optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53:975–85.
Hwang YH. Factors affecting interocular differences in retinal nerve fiber layer thickness. Invest Ophthalmol Vis Sci. 2015;56:3621–2.
Kang HM, Kim SJ, Koh HJ, Lee CS, Lee SC. Discrepancy in subfoveal choroidal thickness in healthy adults with isometropia. Ophthalmology. 2015;122:2363–4.
Huang W, Wang W, Zhou M, Chen S, Gao X, Fan Q, Ding X, Zhang X. Peripapillary choroidal thickness in healthy Chinese subjects. BMC Ophthalmol. 2013;13:23.
Wang W, Zhou M, Huang W, Chen S, Ding X, Zhang X. Does acute primary angle-closure cause an increased choroidal thickness? Invest Ophthalmol Vis Sci. 2013;54:3538–45.
Jee D, Hong SW, Jung YH, Ahn MD. Interocular retinal nerve fiber layer thickness symmetry value in normal young adults. J Glaucoma. 2014;23:e125–31.
Al-Haddad C, Antonios R, Tamim H, Noureddin B. Interocular symmetry in retinal and optic nerve parameters in children as measured by spectral domain optical coherence tomography. Br J Ophthalmol. 2014;98:502–6.
Hwang YH, Song M, Kim YY, Yeom DJ, Lee JH. Interocular symmetry of retinal nerve fibre layer thickness in healthy eyes: a spectral-domain optical coherence tomographic study. Clin Exp Optom. 2014;97:550–4.
Field MG, Alasil T, Baniasadi N, Que C, Simavli H, Sobeih D, Sola-Del VD, Best MJ, Chen TC. Facilitating glaucoma diagnosis with intereye retinal nerve fiber layer asymmetry using spectral-domain optical coherence tomography. J Glaucoma. 2016;25:167–76.
Choi JA, Kim JS, Park HY, Park H, Park CK. Retinal nerve fiber layer thickness profiles associated with ocular laterality and dominance. Neurosci Lett. 2014;558:197–202.
Yamashita T, Sakamoto T, Kakiuchi N, Tanaka M, Kii Y, Nakao K. Posterior pole asymmetry analyses of retinal thickness of upper and lower sectors and their association with peak retinal nerve fiber layer thickness in healthy young eyes. Invest Ophthalmol Vis Sci. 2014;55:5673–8.
Chen L, Huang J, Zou H, Xue W, Ma Y, He X, Lu L, Zhu J. Retinal nerve fiber layer thickness in normal Chinese students aged 6 to 17 years. Invest Ophthalmol Vis Sci. 2013;54:7990–7.
Altemir I, Oros D, Elia N, Polo V, Larrosa JM, Pueyo V. Retinal asymmetry in children measured with optical coherence tomography. Am J Ophthalmol. 2013;156:1238–43.
Sullivan-Mee M, Ruegg CC, Pensyl D, Halverson K, Qualls C. Diagnostic precision of retinal nerve fiber layer and macular thickness asymmetry parameters for identifying early primary open-angle glaucoma. Am J Ophthalmol. 2013;156:567–77.
Mwanza JC, Durbin MK, Budenz DL. Interocular symmetry in peripapillary retinal nerve fiber layer thickness measured with the Cirrus HD-OCT in healthy eyes. Am J Ophthalmol. 2011;151:514–21.
Qian J, Wang W, Zhang X, Wang F, Jiang Y, Wang W, Xu S, Wu Y, Su Y, Xu X, et al. Optical coherence tomography measurements of retinal nerve fiber layer thickness in chinese children and teenagers. J Glaucoma. 2011;20:509–13.
Budenz DL. Symmetry between the right and left eyes of the normal retinal nerve fiber layer measured with optical coherence tomography (an AOS thesis). Trans Am Ophthalmol Soc. 2008;106:252–75.
Huynh SC, Wang XY, Burlutsky G, Mitchell P. Symmetry of optical coherence tomography retinal measurements in young children. Am J Ophthalmol. 2007;143:518–20.
Park JJ, Oh DR, Hong SP, Lee KW. Asymmetry analysis of the retinal nerve fiber layer thickness in normal eyes using optical coherence tomography. Korean J Ophthalmol. 2005;19:281–7.
Mrejen S, Spaide RF. Optical coherence tomography: imaging of the choroid and beyond. Surv Ophthalmol. 2013;58:387–429.
Ferrara D, Waheed NK, Duker JS. Investigating the choriocapillaris and choroidal vasculature with new optical coherence tomography technologies. Prog Retin Eye Res. 2016;52:130–55.
Rawji MH, Flanagan JG. Intraocular and interocular symmetry in normal retinal capillary perfusion. J Glaucoma. 2001;10:4–12.
Mansouri K, Medeiros FA, Marchase N, Tatham AJ, Auerbach D, Weinreb RN. Assessment of choroidal thickness and volume during the water drinking test by swept-source optical coherence tomography. Ophthalmology. 2013;120:2508–16.
Park HY, Shin HY, Park CK. Imaging the posterior segment of the eye using swept-source optical coherence tomography in myopic glaucoma eyes: comparison with enhanced-depth imaging. Am J Ophthalmol. 2014;157:550–7.
Tan CS, Ngo WK, Cheong KX. Comparison of choroidal thicknesses using swept source and spectral domain optical coherence tomography in diseased and normal eyes. Br J Ophthalmol. 2015;99:354–8.