International Union of Basic and Clinical Pharmacology. CXI. Pharmacology, Signaling, and Physiology of Metabotropic Glutamate Receptors

Pharmacological Reviews - Tập 73 Số 1 - Trang 521-569 - 2021
Karen J. Gregory1, Cyril Goudet1
1Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1126/scisignal.aan6387

Abe, 2017, Discovery of VU6005649, a CNS penetrant mGlu7/8 receptor PAM derived from a series of pyrazolo[1,5-a]pyrimidines, ACS Med Chem Lett, 8, 1110, 10.1021/acsmedchemlett.7b00317

Abe, 1992, Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction, J Biol Chem, 267, 13361, 10.1016/S0021-9258(18)42219-3

10.1113/jphysiol.2012.232074

10.1155/2014/652750

10.1124/jpet.112.196295

Acher F Battaglia G Bräuner-Osborne H Conn PJ Duvoisin R Ferraguti F Flor PJ Goudet C Gregory KJ Hampson D (2019) Metabotropic glutamate receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide to Pharmacology CITE 4 Available from: 10.2218/gtopdb/F40/2019.4.

10.1002/bip.20229

10.1016/j.neuropharm.2010.07.002

10.1021/jm970207b

Acosta-Ruiz, 2020, Branched photoswitchable tethered ligands enable ultra-efficient optical control and detection of G protein-coupled receptors in vivo, Neuron, 105, 446, 10.1016/j.neuron.2019.10.036

10.1186/1471-244X-13-143

Adams, 2014, Pomaglumetad methionil (LY2140023 monohydrate) and aripiprazole in patients with schizophrenia: a phase 3, multicenter, double-blind comparison, Schizophr Res Treatment, 2014, 758212, 10.1155/2014/758212

10.1016/j.biopsych.2016.04.023

10.1016/j.ejphar.2008.11.018

Ahnaou, 2016, Translational neurophysiological markers for activity of the metabotropic glutamate receptor (mGluR2) modulator JNJ-40411813: sleep EEG correlates in rodents and healthy men, Neuropharmacology, 103, 290, 10.1016/j.neuropharm.2015.11.031

Ahnaou, 2015, mGlu2 receptor agonism, but not positive allosteric modulation, elicits rapid tolerance towards their primary efficacy on sleep measures in rats, PLoS One, 10, e0144017, 10.1371/journal.pone.0144017

Ahnaou, 2016, Off-target potential of AMN082 on sleep EEG and related physiological variables: evidence from mGluR7 (-/-) mice, Behav Brain Res, 311, 287, 10.1016/j.bbr.2016.05.035

10.1016/j.neuropharm.2005.05.005

10.1111/bph.14748

10.1016/j.neuropharm.2012.05.026

10.1016/j.brainresbull.2010.01.011

10.1017/S1461145714000959

Annes, 2015, Relative contributions of presystemic and systemic peptidases to oral exposure of a novel metabotropic glutamate 2/3 receptor agonist (LY404039) after oral administration of prodrug pomaglumetad methionil (LY2140023), J Pharm Sci, 104, 207, 10.1002/jps.24226

10.1016/0960-894X(96)00104-7

10.1016/j.expneurol.2008.11.005

10.1016/j.brainres.2009.08.087

10.1016/S0165-0173(98)00050-2

10.1016/0896-6273(92)90096-V

10.1016/j.nbd.2005.09.010

10.1046/j.1460-9568.2003.02657.x

10.1124/mol.119.119032

10.1016/S0006-8993(98)00698-2

Aubrey, 2017, Endocannabinoids control vesicle release mode at midbrain periaqueductal grey inhibitory synapses, J Physiol, 595, 165, 10.1113/JP272292

Augier, 2016, The mGluR2 positive allosteric modulator, AZD8529, and cue-induced relapse to alcohol seeking in rats, Neuropsychopharmacology, 41, 2932, 10.1038/npp.2016.107

10.1371/journal.pone.0032849

Bahi, 2012, Pharmacological modulation of mGluR7 with AMN082 and MMPIP exerts specific influences on alcohol consumption and preference in rats, Addict Biol, 17, 235, 10.1111/j.1369-1600.2010.00310.x

Bailey, 2016, Mavoglurant in adolescents with fragile X syndrome: analysis of Clinical Global Impression-Improvement source data from a double-blind therapeutic study followed by an open-label, long-term extension study, J Neurodev Disord, 8, 1, 10.1186/s11689-015-9134-5

10.1016/j.neuroscience.2006.06.043

10.1038/npp.2016.2

10.1016/S0006-8993(01)03062-1

10.1016/j.eplepsyres.2003.08.001

10.1016/j.neuropharm.2005.01.017

Battaglia, 2018, Metabotropic glutamate receptor involvement in the pathophysiology of amyotrophic lateral sclerosis: new potential drug targets for therapeutic applications, Curr Opin Pharmacol, 38, 65, 10.1016/j.coph.2018.02.007

10.1523/JNEUROSCI.3831-03.2004

10.1523/JNEUROSCI.1595-06.2006

10.1016/S0028-3908(03)00146-1

10.1523/JNEUROSCI.22-06-02135.2002

10.1016/j.nbd.2014.11.012

10.1038/npp.2014.59

Bellozi, 2019, A positive allosteric modulator of mGluR5 promotes neuroprotective effects in mouse models of Alzheimer’s disease, Neuropharmacology, 160, 107785, 10.1016/j.neuropharm.2019.107785

10.1124/mol.107.035170

10.1523/JNEUROSCI.22-22-09679.2002

Benvenga, 2018, Metabotropic glutamate2 receptors play a key role in modulating head twitches induced by a serotonergic hallucinogen in mice, Front Pharmacol, 9, 208, 10.3389/fphar.2018.00208

10.1016/j.ejphar.2008.06.054

Berizzi, 2020, Strategies and considerations of G-protein-coupled receptor photopharmacology, Adv Pharmacol, 88, 143, 10.1016/bs.apha.2019.12.001

10.1126/scitranslmed.aab4109

10.1136/jmg.2008.063701

10.1038/nn.2142

10.1021/jm010323l

10.1016/j.biopsych.2009.09.016

10.1110/ps.9.11.2200

10.1073/pnas.162138699

10.1111/j.1476-5381.2012.01943.x

10.1096/fj.09-131789

10.1002/mds.25920

10.1523/JNEUROSCI.3155-04.2004

10.1038/86075

10.1021/jm00127a030

10.1098/rspb.1983.0093

10.1016/j.neulet.2010.09.043

10.1016/j.alcohol.2004.10.003

Boccella, 2020, The modulation of pain by metabotropic glutamate receptors 7 and 8 in the dorsal striatum, Curr Neuropharmacol, 18, 34, 10.2174/1570159X17666190618121859

Bond, 2000, Neuroprotective effects of LY379268, a selective mGlu2/3 receptor agonist: investigations into possible mechanism of action in vivo, J Pharmacol Exp Ther, 294, 800

10.1097/00001756-199704140-00027

10.1016/S0304-3940(99)00663-1

10.1016/S0028-3908(96)00101-3

10.1016/S0028-3908(98)00091-4

Bradley, 2011, Defining protein kinase/phosphatase isoenzymic regulation of mGlu5 receptor-stimulated phospholipase C and Ca2+ responses in astrocytes, Br J Pharmacol, 164, 755, 10.1111/j.1476-5381.2011.01421.x

10.1124/mol.110.068882

10.1038/sj.mp.4001404

Broichhagen, 2015, Orthogonal optical control of a G protein-coupled receptor with a SNAP-tethered photochromic ligand, ACS Cent Sci, 1, 383, 10.1021/acscentsci.5b00260

10.1016/S0028-3908(98)00159-2

10.1016/0014-2999(94)90624-6

10.1523/JNEUROSCI.17-06-01891.1997

10.1046/j.1471-4159.2003.01842.x

10.1111/j.1471-4159.2009.06078.x

10.1046/j.1471-4159.2001.00468.x

10.1016/j.mcn.2007.08.009

10.1073/pnas.90.16.7661

10.3109/01677063.2011.627485

10.1111/j.1460-9568.2004.03378.x

10.1016/j.biopsych.2015.02.018

Car, 2006, Antidepressant-like effects of baclofen and LY367385 in the forced swim test in rats, Pharmacol Rep, 58, 758

10.1124/mol.110.067488

10.1073/pnas.1416942112

10.1124/mol.59.5.965

10.1038/sj.bjp.0701647

Cartmell, 1999, The metabotropic glutamate 2/3 receptor agonists LY354740 and LY379268 selectively attenuate phencyclidine versus d-amphetamine motor behaviors in rats, J Pharmacol Exp Ther, 291, 161

10.1007/s002109900151

10.1517/17460441.2012.660914

10.1517/13543776.2014.983899

10.1016/j.bmcl.2013.01.116

Chaki, 2018, mGlu receptors as potential targets for novel antidepressants, Curr Opin Pharmacol, 38, 24, 10.1016/j.coph.2018.02.001

10.1016/S0028-3908(99)00242-7

Charvin, 2018, mGlu4 allosteric modulation for treating Parkinson’s disease, Neuropharmacology, 135, 308, 10.1016/j.neuropharm.2018.03.027

Charvin, 2018, An mGlu4-positive allosteric modulator alleviates Parkinsonism in primates, Mov Disord, 33, 1619, 10.1002/mds.27462

Charvin, 2018, Therapeutic strategies for Parkinson disease: beyond dopaminergic drugs, Nat Rev Drug Discov, 17, 804, 10.1038/nrd.2018.136

Charvin, 2017, Discovery, structure-activity relationship, and antiparkinsonian effect of a potent and brain-penetrant chemical series of positive allosteric modulators of metabotropic glutamate receptor 4, J Med Chem, 60, 8515, 10.1021/acs.jmedchem.7b00991

10.1038/72053

10.1016/S0896-6273(00)81015-6

Chen, 2020, Identification of monellin as the first naturally derived proteinaceous allosteric agonist of metabotropic glutamate receptor 5, Basic Clin Pharmacol Toxicol, 126, 104, 10.1111/bcpt.13239

10.1124/jpet.104.073817

10.1124/mol.107.040097

10.1124/mol.106.032425

10.1113/jphysiol.2013.255075

10.1038/nn0901-873

Cho, 2014, A novel class of succinimide-derived negative allosteric modulators of metabotropic glutamate receptor subtype 1 provides insight into a disconnect in activity between the rat and human receptors, ACS Chem Neurosci, 5, 597, 10.1021/cn5000343

Cho, 2014, Chemical modulation of mutant mGlu1 receptors derived from deleterious GRM1 mutations found in schizophrenics, ACS Chem Biol, 9, 2334, 10.1021/cb500560h

Chojnacka-Wójcik, 1996, Anxiolytic-like effects of metabotropic glutamate antagonist (RS)-alpha-methylserine-O-phosphate in rats, Pol J Pharmacol, 48, 507

10.1016/S0014-2999(96)00941-7

10.1016/S0028-3908(99)00008-8

10.1021/acs.jmedchem.5b00892

10.1021/acs.jmedchem.7b01722

10.1002/cmdc.201000378

10.1124/mol.106.031617

Cid, 2014, Discovery of 1-butyl-3-chloro-4-(4-phenyl-1-piperidinyl)-(1H)-pyridone (JNJ-40411813): a novel positive allosteric modulator of the metabotropic glutamate 2 receptor, J Med Chem, 57, 6495, 10.1021/jm500496m

10.1021/jm3010724

Cieślik, 2018, Negative allosteric modulators of mGlu7 receptor as putative antipsychotic drugs, Front Mol Neurosci, 11, 316, 10.3389/fnmol.2018.00316

10.1016/j.biopsych.2009.12.018

10.1074/jbc.M006960200

10.1016/S0960-894X(97)10071-3

10.1016/S0091-3057(02)00848-1

10.1037/a0022339

Cleva, 2012, Differential modulation of thresholds for intracranial self-stimulation by mGlu5 positive and negative allosteric modulators: implications for effects on drug self-administration, Front Pharmacol, 2, 93, 10.3389/fphar.2011.00093

10.1007/s00213-012-2845-3

Commare, 2015, Determination of the absolute configuration of phosphinic analogues of glutamate, Org Biomol Chem, 13, 1106, 10.1039/C4OB01960A

10.1021/acsmedchemlett.5b00181

Conti, 2002, Synthesis and pharmacology of 3-hydroxy-delta2-isoxazoline-cyclopentane analogues of glutamic acid, Farmaco, 57, 889, 10.1016/S0014-827X(02)01307-1

Copani, 1995, Activation of metabotropic glutamate receptors protects cultured neurons against apoptosis induced by beta-amyloid peptide, Mol Pharmacol, 47, 890

10.1016/S0306-4522(01)00591-7

10.1523/JNEUROSCI.1889-07.2007

10.1046/j.1460-9568.1998.00371.x

10.1016/S0960-894X(02)00997-6

Crawford, 1997, Activation of Ca2+-dependent currents in dorsal root ganglion neurons by metabotropic glutamate receptors and cyclic ADP-ribose precursors, J Neurophysiol, 77, 2573, 10.1152/jn.1997.77.5.2573

Cross, 2018, Metabotropic glutamate receptors 2 and 3 as targets for treating nicotine addiction, Biol Psychiatry, 83, 947, 10.1016/j.biopsych.2017.11.021

Crupi, 2019, Role of metabotropic glutamate receptors in neurological disorders, Front Mol Neurosci, 12, 20, 10.3389/fnmol.2019.00020

10.1046/j.1460-9568.2003.02667.x

Cuomo, 2009, Metabotropic glutamate receptor subtype 4 selectively modulates both glutamate and GABA transmission in the striatum: implications for Parkinson’s disease treatment, J Neurochem, 109, 1096, 10.1111/j.1471-4159.2009.06036.x

10.1074/jbc.M006075200

Dalton, 2017, Analysis of positive and negative allosteric modulation in metabotropic glutamate receptors 4 and 5 with a dual ligand, Sci Rep, 7, 4944, 10.1038/s41598-017-05095-5

D’Amore, 2016, The anti-absence effect of mGlu5 receptor amplification with VU0360172 is maintained during and after antiepileptogenesis, Pharmacol Biochem Behav, 146–147, 50, 10.1016/j.pbb.2016.05.004

D’Amore, 2014, Head-to head comparison of mGlu1 and mGlu5 receptor activation in chronic treatment of absence epilepsy in WAG/Rij rats, Neuropharmacology, 85, 91, 10.1016/j.neuropharm.2014.05.005

D’Amore, 2013, Potentiation of mGlu5 receptors with the novel enhancer, VU0360172, reduces spontaneous absence seizures in WAG/Rij rats, Neuropharmacology, 66, 330, 10.1016/j.neuropharm.2012.05.044

10.1111/epi.13024

10.1016/j.nbd.2014.12.021

Dekundy, 2011, Pharmacological characterization of MRZ-8676, a novel negative allosteric modulator of subtype 5 metabotropic glutamate receptors (mGluR5): focus on L: -DOPA-induced dyskinesia, J Neural Transm (Vienna), 118, 1703, 10.1007/s00702-010-0526-0

10.1016/j.neuropharm.2013.02.005

10.1021/jm051252j

10.1016/S0014-2999(01)01296-1

10.1016/S0304-3940(02)00179-9

Di Menna, 2018, Functional partnership between mGlu3 and mGlu5 metabotropic glutamate receptors in the central nervous system, Neuropharmacology, 128, 301, 10.1016/j.neuropharm.2017.10.026

10.1124/mol.114.096420

DiRaddo, 2013, Two newly identified exons in human GRM1 express a novel splice variant of metabotropic glutamate 1 receptor, Gene, 519, 367, 10.1016/j.gene.2013.02.009

10.1016/S0028-3908(97)00001-4

10.1113/jphysiol.2008.150722

Domenici, 2004, Permissive role of adenosine A2A receptors on metabotropic glutamate receptor 5 (mGluR5)-mediated effects in the striatum, J Neurochem, 90, 1276, 10.1111/j.1471-4159.2004.02607.x

Domin, 2014, Group III mGlu receptor agonist, ACPT-I, exerts potential neuroprotective effects in vitro and in vivo, Neurotox Res, 26, 99, 10.1007/s12640-013-9455-7

Domin, 2016, Neuroprotective potential of the group III mGlu receptor agonist ACPT-I in animal models of ischemic stroke: in vitro and in vivo studies, Neuropharmacology, 102, 276, 10.1016/j.neuropharm.2015.11.025

Domin, 2018, Neuroprotective effect of the group III mGlu receptor agonist ACPT-I after ischemic stroke in rats with essential hypertension, Prog Neuropsychopharmacol Biol Psychiatry, 84, 93, 10.1016/j.pnpbp.2018.02.006

Donthamsetti, 2019, Genetically targeted optical control of an endogenous G protein-coupled receptor, J Am Chem Soc, 141, 11522, 10.1021/jacs.9b02895

Doornbos, 2016, Molecular mechanism of positive allosteric modulation of the metabotropic glutamate receptor 2 by JNJ-46281222, Br J Pharmacol, 173, 588, 10.1111/bph.13390

Doornbos, 2017, Discovery and kinetic profiling of 7-Aryl-1,2,4-triazolo[4,3-a]pyridines: positive allosteric modulators of the metabotropic glutamate receptor 2, J Med Chem, 60, 6704, 10.1021/acs.jmedchem.7b00669

Doornbos, 2019, Covalent allosteric probe for the metabotropic glutamate receptor 2: design, synthesis, and pharmacological characterization, J Med Chem, 62, 223, 10.1021/acs.jmedchem.8b00051

10.1038/nature13396

10.1016/j.nbd.2014.08.021

Doria, 2018, The mGluR5 positive allosteric modulator VU0409551 improves synaptic plasticity and memory of a mouse model of Huntington’s disease, J Neurochem, 147, 222, 10.1111/jnc.14555

10.1111/bph.12164

10.1073/pnas.1215615110

10.1096/fj.10-163147

10.1186/s12888-014-0351-3

Dravolina, 2017, mGlu1 receptor as a drug target for treatment of substance use disorders: time to gather stones together?, Psychopharmacology (Berl), 234, 1333, 10.1007/s00213-017-4581-1

10.1073/pnas.0501233102

10.1038/sj.npp.1301531

Durand, 2011, Reduced cAMP, Akt activation and p65-c-Rel dimerization: mechanisms involved in the protective effects of mGluR3 agonists in cultured astrocytes, PLoS One, 6, e22235, 10.1371/journal.pone.0022235

10.1016/S0028-3908(98)00206-8

10.1016/j.bbr.2010.04.006

10.1016/j.bbr.2011.02.049

10.1111/j.1460-9568.2005.04210.x

10.1523/JNEUROSCI.15-04-03075.1995

10.1517/13543770903551295

Elia, 2018, Fasoracetam in adolescents with ADHD and glutamatergic gene network variants disrupting mGluR neurotransmitter signaling, Nat Commun, 9, 4, 10.1038/s41467-017-02244-2

10.1038/sj.bjp.0706877

10.1073/pnas.1205838109

10.1124/mol.112.078444

10.1074/jbc.M110.139899

10.1016/0028-3908(96)84622-3

Eng, 2016, Transduction of group I mGluR-mediated synaptic plasticity by β-arrestin2 signalling, Nat Commun, 7, 13571, 10.1038/ncomms13571

Engers, 2016, Discovery, synthesis, and preclinical characterization of N-(3-chloro-4-fluorophenyl)-1H-pyrazolo[4,3-b]pyridin-3-amine (VU0418506), a novel positive allosteric modulator of the metabotropic glutamate receptor 4 (mGlu4), ACS Chem Neurosci, 7, 1192, 10.1021/acschemneuro.6b00035

10.1021/jm101271s

Engers, 2010, Synthesis and SAR of novel, 4-(phenylsulfamoyl)phenylacetamide mGlu4 positive allosteric modulators (PAMs) identified by functional high-throughput screening (HTS), Bioorg Med Chem Lett, 20, 5175, 10.1016/j.bmcl.2010.07.007

10.1021/jm9005065

Engers, 2017, Design and synthesis of N-aryl phenoxyethoxy pyridinones as highly selective and CNS penetrant mGlu3 NAMs, ACS Med Chem Lett, 8, 925, 10.1021/acsmedchemlett.7b00249

Engers, 2015, Discovery of a selective and CNS penetrant negative allosteric modulator of metabotropic glutamate receptor subtype 3 with antidepressant and anxiolytic activity in rodents, J Med Chem, 58, 7485, 10.1021/acs.jmedchem.5b01005

10.1093/cercor/bhr217

10.1089/neu.1997.14.885

10.1006/exnr.2000.7577

10.1038/nm.2183

Farinha, 2015, Molecular determinants of positive allosteric modulation of the human metabotropic glutamate receptor 2, Br J Pharmacol, 172, 2383, 10.1111/bph.13065

10.1021/acschembio.8b00628

Fazio, 2017, Cinnabarinic acid and xanthurenic acid: two kynurenine metabolites that interact with metabotropic glutamate receptors, Neuropharmacology, 112, 365, 10.1016/j.neuropharm.2016.06.020

10.1124/mol.111.074765

10.1016/j.neuropharm.2014.02.011

Feenstra, 1998, Local activation of metabotropic glutamate receptors inhibits the handling-induced increased release of dopamine in the nucleus accumbens but not that of dopamine or noradrenaline in the prefrontal cortex: comparison with inhibition of ionotropic receptors, J Neurochem, 70, 1104, 10.1046/j.1471-4159.1998.70031104.x

10.1124/jpet.116.237859

Fell, 2010, Activation of metabotropic glutamate (mGlu)2 receptors suppresses histamine release in limbic brain regions following acute ketamine challenge, Neuropharmacology, 58, 632, 10.1016/j.neuropharm.2009.11.014

10.1124/jpet.108.136861

Felsing, 2018, Biophysical validation of serotonin 5-HT2A and 5-HT2C receptor interaction, PLoS One, 13, e0203137, 10.1371/journal.pone.0203137

10.1016/j.bmcl.2013.09.001

Felts, 2015, Design of 4-Oxo-1-aryl-1,4-dihydroquinoline-3-carboxamides as selective negative allosteric modulators of metabotropic glutamate receptor subtype 2, J Med Chem, 58, 9027, 10.1021/acs.jmedchem.5b01371

10.1111/j.1601-183X.2009.00532.x

10.1016/j.neuropharm.2013.04.052

10.1016/j.coph.2018.02.004

10.1523/JNEUROSCI.2547-05.2005

10.1007/s00441-006-0266-5

10.1073/pnas.172393799

Ferré, 1999, Adenosine A2A and group I metabotropic glutamate receptors synergistically modulate the binding characteristics of dopamine D2 receptors in the rat striatum, Neuropharmacology, 38, 129, 10.1016/S0028-3908(98)00154-3

Fisher, 2018, Metabotropic glutamate receptor 7: a new therapeutic target in neurodevelopmental disorders, Front Mol Neurosci, 11, 387, 10.3389/fnmol.2018.00387

10.1073/pnas.2136600100

10.1016/S0006-8993(00)02429-X

10.1111/j.1460-9568.1995.tb00666.x

10.1016/0028-3908(94)00149-M

10.1016/S0028-3908(96)00176-1

Font, 2017, Optical control of pain in vivo with a photoactive mGlu5 receptor negative allosteric modulator [published correction appears in eLife (2018) 7:e34752], eLife, 6, e23545, 10.7554/eLife.23545

10.1016/0169-328X(94)90259-3

10.1074/jbc.273.10.5615

10.1073/pnas.97.11.6185

10.1523/JNEUROSCI.22-06-02196.2002

10.1111/j.1471-4159.2009.05913.x

10.1523/JNEUROSCI.5824-08.2009

10.1371/journal.pone.0019011

10.1016/j.cell.2011.09.055

10.1016/j.bmc.2010.11.048

Fukuda, 1985, Quisqualic acid-induced hippocampal seizures in unanesthetized cats, Neurosci Lett, 59, 53, 10.1016/0304-3940(85)90214-9

10.1016/j.neuropharm.2009.06.017

10.1038/sj.bjp.0707286

Fuzzati-Armentero, 2015, Dual target strategy: combining distinct non-dopaminergic treatments reduces neuronal cell loss and synergistically modulates L-DOPA-induced rotational behavior in a rodent model of Parkinson’s disease, J Neurochem, 134, 740, 10.1111/jnc.13162

10.1016/j.brainres.2007.10.007

10.1124/jpet.105.091074

10.1124/jpet.106.102046

Gandhi, 2014, 2-Methyl-6-(phenylethynyl) pyridine (MPEP) reverses maze learning and PSD-95 deficits in Fmr1 knock-out mice, Front Cell Neurosci, 8, 70, 10.3389/fncel.2014.00070

10.1016/j.bbr.2012.10.059

Garcia-Barrantes, 2015, Lead optimization of the VU0486321 series of mGlu1 PAMs. Part 1: SAR of modifications to the central aryl core, Bioorg Med Chem Lett, 25, 5107, 10.1016/j.bmcl.2015.10.013

Garcia-Barrantes, 2016, Lead optimization of the VU0486321 series of mGlu1 PAMs. Part 3. Engineering plasma stability by discovery and optimization of isoindolinone analogs, Bioorg Med Chem Lett, 26, 1869, 10.1016/j.bmcl.2016.03.031

Garcia-Barrantes, 2015, Development of novel, CNS penetrant positive allosteric modulators for the metabotropic glutamate receptor subtype 1 (mGlu1), based on an N-(3-Chloro-4-(1,3-dioxoisoindolin-2-yl)phenyl)-3-methylfuran-2-carboxamide scaffold, that potentiate wild type and mutant mGlu1 receptors found in schizophrenics, J Med Chem, 58, 7959, 10.1021/acs.jmedchem.5b00727

Garcia-Barrantes, 2016, Re-exploration of the mGlu1 PAM Ro 07-11401 scaffold: discovery of analogs with improved CNS penetration despite steep SAR, Bioorg Med Chem Lett, 26, 2289, 10.1016/j.bmcl.2016.03.044

García-Bea, 2017, A group II metabotropic glutamate receptor 3 (mGlu3, GRM3) isoform implicated in schizophrenia interacts with canonical mGlu3 and reduces ligand binding, J Psychopharmacol, 31, 1519, 10.1177/0269881117715597

Gasparini, 1999, (R,S)-4-phosphonophenylglycine, a potent and selective group III metabotropic glutamate receptor agonist, is anticonvulsive and neuroprotective in vivo, J Pharmacol Exp Ther, 289, 1678

10.1016/S0028-3908(99)00082-9

Gass, 2017, Deficits in the extinction of ethanol-seeking behavior following chronic intermittent ethanol exposure are attenuated with positive allosteric modulation of mGlu5, Neuropharmacology, 113, 198, 10.1016/j.neuropharm.2016.10.005

10.1007/s00213-009-1490-y

10.1038/npp.2008.140

10.1038/npp.2011.298

10.1016/j.neuropharm.2012.07.039

10.1016/j.chembiol.2008.01.007

Gawel, 2018, The influence of AMN082, metabotropic glutamate receptor 7 (mGlu7) allosteric agonist on the acute and chronic antinociceptive effects of morphine in the tail-immersion test in mice: Comparison with mGlu5 and mGlu2/3 ligands, Physiol Behav, 185, 112, 10.1016/j.physbeh.2017.12.035

10.1074/jbc.M113.542654

Gelb, 2015, Atypical signaling of metabotropic glutamate receptor 1 in human melanoma cells, Biochem Pharmacol, 98, 182, 10.1016/j.bcp.2015.08.091

Gelb, 2015, Metabotropic glutamate receptor 1 acts as a dependence receptor creating a requirement for glutamate to sustain the viability and growth of human melanomas, Oncogene, 34, 2711, 10.1038/onc.2014.231

10.1523/JNEUROSCI.15-10-06879.1995

10.1016/S0896-6273(00)80442-0

10.1016/S0028-3908(02)00078-3

10.1037/0735-7044.112.3.525

Ghoshal, 2017, Role of mGlu5 receptors and inhibitory neurotransmission in M1 dependent muscarinic LTD in the prefrontal cortex: implications in schizophrenia, ACS Chem Neurosci, 8, 2254, 10.1021/acschemneuro.7b00167

10.1016/j.neuropharm.2012.07.030

Girard, 2019, The mGlu7 receptor provides protective effects against epileptogenesis and epileptic seizures, Neurobiol Dis, 129, 13, 10.1016/j.nbd.2019.04.016

10.1093/ijnp/pyv053

10.1016/j.neuropharm.2012.08.001

10.1126/scitranslmed.aai7459

Golubeva, 2016, Metabotropic glutamate receptors in central nervous system diseases, Curr Drug Targets, 17, 538, 10.2174/1389450116666150316224011

Gómez-Santacana, 2017, Illuminating phenylazopyridines to photoswitch metabotropic glutamate receptors: from the flask to the animals, ACS Cent Sci, 3, 81, 10.1021/acscentsci.6b00353

10.1038/nature06612

10.1016/j.pain.2007.08.020

10.1074/jbc.M502642200

Goudet, 2018, Shedding light on metabotropic glutamate receptors using optogenetics and photopharmacology, Curr Opin Pharmacol, 38, 8, 10.1016/j.coph.2018.01.007

10.1096/fj.11-195941

10.1038/npp.2015.265

10.1007/s00213-004-2127-9

10.1523/JNEUROSCI.0013-12.2012

Gregory, 2019, In vitro to in vivo translation of allosteric modulator concentration-effect relationships: implications for drug discovery, ACS Pharmacol Transl Sci, 2, 442, 10.1021/acsptsci.9b00062

Gregory, 2020, Evaluation of operational models of agonism and allosterism at receptors with multiple orthosteric binding sites, Mol Pharmacol, 97, 35, 10.1124/mol.119.118091

10.1124/jpet.113.206623

Gregory, 2018, Dual action calcium-sensing receptor modulator unmasks novel mode-switching mechanism, ACS Pharmacol Transl Sci, 1, 96, 10.1021/acsptsci.8b00021

Gregory KJ Malosh C Turlington M Morrison R Vinson P Daniels JS Jones C Niswender CM Conn PJ Lindsley CW (2010a) Identification of a high affinity MPEP-site silent allosteric modulator (SAM) for the metabotropic glutamate subtype 5 receptor (mGlu5), Probe Reports from the NIH Molecular Libraries Program, National Center for Biotechnology Information (US), Bethesda, MD.

10.1021/cn400225x

10.1124/mol.112.083949

10.1124/mol.112.080531

Gregory, 2010, Overview of receptor allosterism, Curr Protoc Pharmacol, Chapter 1, Unit 1.21

Gregory, 2016, Clickable photoaffinity ligands for metabotropic glutamate receptor 5 based on select acetylenic negative allosteric modulators, ACS Chem Biol, 11, 1870, 10.1021/acschembio.6b00026

Griebel, 2016, The mGluR2 positive allosteric modulator, SAR218645, improves memory and attention deficits in translational models of cognitive symptoms associated with schizophrenia, Sci Rep, 6, 35320, 10.1038/srep35320

10.1007/s00213-003-1444-8

10.1074/jbc.M116.752105

Gutzeit, 2019, Conformational dynamics between transmembrane domains and allosteric modulation of a metabotropic glutamate receptor, eLife, 8, e45116, 10.7554/eLife.45116

Haas, 2007, The non-competitive metabotropic glutamate receptor-1 antagonist CPCCOEt inhibits the in vitro growth of human melanoma, Oncol Rep, 17, 1399

10.1016/j.celrep.2017.06.023

Habrian, 2019, Conformational pathway provides unique sensitivity to a synaptic mGluR, Nat Commun, 10, 5572, 10.1038/s41467-019-13407-8

10.1016/j.neuroscience.2010.02.057

Hajasova, 2018, Role of mGlu7 receptor in morphine rewarding effects is uncovered by a novel orthosteric agonist, Neuropharmacology, 131, 424, 10.1016/j.neuropharm.2018.01.002

Halberstadt, 2019, Chronic treatment with a metabotropic mGlu2/3 receptor agonist diminishes behavioral response to a phenethylamine hallucinogen, Psychopharmacology (Berl), 236, 821, 10.1007/s00213-018-5118-y

Hall, 2013, Application of receptor theory to allosteric modulation of receptors, Prog Mol Biol Transl Sci, 115, 217, 10.1016/B978-0-12-394587-7.00006-3

10.1111/bph.14190

10.1016/j.celrep.2016.04.077

10.1021/cn100051m

Hanak, 2019, Positive modulation of mGluR5 attenuates seizures and reduces TNF-α+ macrophages and microglia in the brain in a murine model of virus-induced temporal lobe epilepsy, Exp Neurol, 311, 194, 10.1016/j.expneurol.2018.10.006

Hanna, 2013, Differentiating the roles of mGlu2 and mGlu3 receptors using LY541850, an mGlu2 agonist/mGlu3 antagonist, Neuropharmacology, 66, 114, 10.1016/j.neuropharm.2012.02.023

10.1007/s00213-007-0742-y

10.1016/j.neuropharm.2013.06.020

10.1111/j.1476-5381.1993.tb13733.x

Hathaway, 2015, Pharmacological characterization of mGlu1 receptors in cerebellar granule cells reveals biased agonism, Neuropharmacology, 93, 199, 10.1016/j.neuropharm.2015.02.007

10.1038/366687a0

Hellyer, 2020, Development of clickable photoaffinity ligands for metabotropic glutamate receptor 2 based on two positive allosteric modulator chemotypes, ACS Chem Neurosci, 11, 1597, 10.1021/acschemneuro.0c00009

Hellyer, 2019, Metabotropic glutamate receptor 5 (mGlu5 )-positive allosteric modulators differentially induce or potentiate desensitization of mGlu5 signaling in recombinant cells and neurons, J Neurochem, 151, 301, 10.1111/jnc.14844

10.1124/mol.117.111518

Hellyer, 2020, Probe dependence and biased potentiation of metabotropic glutamate receptor 5 is mediated by differential ligand interactions in the common allosteric binding site, Biochem Pharmacol, 177, 114013, 10.1016/j.bcp.2020.114013

10.1016/S0028-3908(97)00170-6

Helton, 1998, Anxiolytic and side-effect profile of LY354740: a potent, highly selective, orally active agonist for group II metabotropic glutamate receptors, J Pharmacol Exp Ther, 284, 651

10.1124/jpet.106.117093

10.1124/mol.105.021857

10.1097/00001756-199804200-00006

Henrich-Noack, 1999, (1S,3R)-ACPD, a metabotropic glutamate receptor agonist, enhances damage after global ischaemia, Eur J Pharmacol, 365, 55, 10.1016/S0014-2999(98)00865-6

10.1016/S0028-3908(98)00132-4

Hikichi, 2013, Stimulation of metabotropic glutamate (mGlu) 2 receptor and blockade of mGlu1 receptor improve social memory impairment elicited by MK-801 in rats, J Pharmacol Sci, 122, 10, 10.1254/jphs.13036FP

10.1016/j.ejphar.2009.08.047

10.1016/j.ejphar.2010.03.046

Hinoi, 2000, Direct radiolabeling by [3H]quisqualic acid of group I metabotropic glutamate receptor in rat brain synaptic membranes, Brain Res, 881, 199, 10.1016/S0006-8993(00)02809-2

10.1074/jbc.C200112200

10.1124/jpet.114.218651

10.1038/sj.emboj.7600557

10.1007/s00213-005-0217-y

Hoffmann, 2017, Long-lasting impairment of mGluR5-activated intracellular pathways in the striatum after withdrawal of cocaine self-administration, Int J Neuropsychopharmacol, 20, 72

10.1016/0006-8993(93)91447-Z

Hong, 2016, The thalamic mGluR1-PLCβ4 pathway is critical in sleep architecture, Mol Brain, 9, 100, 10.1186/s13041-016-0276-5

Horio, 2013, Therapeutic effects of metabotropic glutamate receptor 5 positive allosteric modulator CDPPB on phencyclidine-induced cognitive deficits in mice, Fundam Clin Pharmacol, 27, 483, 10.1111/j.1472-8206.2012.01045.x

10.1523/JNEUROSCI.0995-04.2004

10.1016/j.pbb.2012.03.022

10.1038/nn.3103

Hu, 2019, Specific activation of mGlu2 induced IGF-1R transactivation in vitro through FAK phosphorylation, Acta Pharmacol Sin, 40, 460, 10.1038/s41401-018-0033-7

10.1523/JNEUROSCI.4247-06.2007

Huang, 2018, L-DOPA-induced motor impairment and overexpression of corticostriatal synaptic components are improved by the mGluR5 antagonist MPEP in 6-OHDA-lesioned rats, ASN Neuro, 10, 1759091418811021, 10.1177/1759091418811021

10.1016/j.neuropharm.2012.04.007

10.1016/j.nlm.2015.08.006

10.1523/JNEUROSCI.2285-06.2006

10.1046/j.1471-4159.2002.00929.x

10.1124/mol.108.052316

10.1074/jbc.M203992200

Iderberg, 2015, Pharmacological stimulation of metabotropic glutamate receptor type 4 in a rat model of Parkinson’s disease and L-DOPA-induced dyskinesia: comparison between a positive allosteric modulator and an orthosteric agonist, Neuropharmacology, 95, 121, 10.1016/j.neuropharm.2015.02.023

Isherwood, 2017, Selective and interactive effects of D2 receptor antagonism and positive allosteric mGluR4 modulation on waiting impulsivity, Neuropharmacology, 123, 249, 10.1016/j.neuropharm.2017.05.006

10.1046/j.1365-2443.1999.00269.x

Itil, 1978, The clinical and quantitative EEG effects and plasma levels of fenobam (McN-3377) in subjects with anxiety: an open rising dose tolerance and efficacy study, Curr Ther Res Clin Exp, 24, 708

Ito, 2009, Discovery and biological profile of isoindolinone derivatives as novel metabotropic glutamate receptor 1 antagonists: a potential treatment for psychotic disorders, Bioorg Med Chem Lett, 19, 5310, 10.1016/j.bmcl.2009.07.145

Jacob, 2009, The anxiolytic and analgesic properties of fenobam, a potent mGlu5 receptor antagonist, in relation to the impairment of learning, Neuropharmacology, 57, 97, 10.1016/j.neuropharm.2009.04.011

10.1126/scitranslmed.3001708

10.1021/cn500153z

Jenda, 2015, AMN082, a metabotropic glutamate receptor 7 allosteric agonist, attenuates locomotor sensitization and cross-sensitization induced by cocaine and morphine in mice, Prog Neuropsychopharmacol Biol Psychiatry, 57, 166, 10.1016/j.pnpbp.2014.11.004

Jia, 1998, Selective abolition of the NMDA component of long-term potentiation in mice lacking mGluR5, Learn Mem, 5, 331, 10.1101/lm.5.4.331

10.1074/jbc.M113.507665

10.1523/JNEUROSCI.3192-12.2013

10.1111/jnc.12434

Jin, 2017, An essential role of Fyn in the modulation of metabotropic glutamate receptor 1 in neurons, eNeuro, 4, ENEURO.0096, 10.1523/ENEURO.0096-17.2017

Jin, 2018, The role of extracellular signal-regulated kinases (ERK) in the regulation of mGlu5 receptors in neurons, J Mol Neurosci, 66, 629, 10.1007/s12031-018-1193-0

Jin, 2015, Metabotropic glutamate receptor 5 upregulates surface NMDA receptor expression in striatal neurons via CaMKII, Brain Res, 1624, 414, 10.1016/j.brainres.2015.07.053

10.1038/npp.2010.82

Joffe, 2019, Mechanisms underlying prelimbic prefrontal cortex mGlu3/mGlu5-dependent plasticity and reversal learning deficits following acute stress, Neuropharmacology, 144, 19, 10.1016/j.neuropharm.2018.10.013

10.1016/j.neuropharm.2017.01.038

10.1021/jm034015u

10.1007/s00213-004-2099-9

10.1177/0269881112454230

10.1523/JNEUROSCI.15-05-03970.1995

10.1124/jpet.111.187443

10.1016/j.neuropharm.2005.05.008

Jong, 2019, Location and cell-type-specific bias of metabotropic glutamate receptor, mGlu5, negative allosteric modulators, ACS Chem Neurosci, 10, 4558, 10.1021/acschemneuro.9b00415

10.1074/jbc.M501775200

10.1074/jbc.M109.046276

10.1124/pr.110.004036

10.1124/mol.105.013961

Justinova, 2015, The novel metabotropic glutamate receptor 2 positive allosteric modulator, AZD8529, decreases nicotine self-sdministration and relapse in squirrel monkeys, Biol Psychiatry, 78, 452, 10.1016/j.biopsych.2015.01.014

Kahl, 2016, Metabotropic glutamate receptors 7 within the nucleus accumbens are involved in relief learning in rats, Curr Neuropharmacol, 14, 405, 10.2174/1570159X13666150425002017

10.1124/jpet.114.214437

10.1124/jpet.112.200915

10.1016/S0306-4522(97)00098-5

10.1124/mol.112.078501

10.1016/S0028-3908(01)00161-7

10.1038/383089a0

Kawaura, 2016, Stimulation of the metabotropic glutamate (mGlu) 2 receptor attenuates the MK-801-induced increase in the immobility time in the forced swimming test in rats, Pharmacol Rep, 68, 80, 10.1016/j.pharep.2015.05.027

10.1007/s00213-013-3106-9

10.1021/cn200111m

Kent, 2016, Efficacy and safety of an adjunctive mGlu2 receptor positive allosteric modulator to a SSRI/SNRI in anxious depression, Prog Neuropsychopharmacol Biol Psychiatry, 67, 66, 10.1016/j.pnpbp.2016.01.009

10.1038/nbt765

10.1136/gut.2008.162040

10.1074/jbc.M502644200

10.1016/j.bbrc.2007.01.125

Kim, 1998, The metabotropic glutamate receptor antagonist (RS)-MCPG produces hyperlocomotion in amphetamine pre-exposed rats, Neuropharmacology, 37, 189, 10.1016/S0028-3908(98)00015-X

10.1038/mp.2014.87

10.1016/S0014-2999(99)00397-0

10.1016/S0028-3908(97)00191-3

10.1152/jn.1993.69.2.585

10.1124/jpet.103.048702

10.1124/jpet.104.079244

10.1016/j.biopsych.2015.03.016

10.1097/JCP.0b013e318218dcd5

10.1016/0304-3940(96)12489-7

10.1016/0304-3940(96)12519-2

10.1002/(SICI)1096-9861(19980413)393:3<332::AID-CNE6>3.0.CO;2-2

10.1002/(SICI)1096-9861(19970901)385:3<372::AID-CNE3>3.0.CO;2-0

10.1523/JNEUROSCI.22-04-01280.2002

Kłak, 2007, Combined administration of PHCCC, a positive allosteric modulator of mGlu4 receptors and ACPT-I, mGlu III receptor agonist evokes antidepressant-like effects in rats, Amino Acids, 32, 169, 10.1007/s00726-006-0316-z

10.1016/j.bbr.2013.06.032

10.1038/nsmb794

10.1111/j.1469-7793.1998.347bn.x

10.1073/pnas.231358298

10.1523/JNEUROSCI.1964-12.2012

10.1038/s41586-019-0881-4

10.1124/jpet.105.087171

10.1073/pnas.0912730107

10.1016/S0960-894X(99)00346-7

10.1007/PL00005284

10.1038/nn.3424

Kubas, 2013, Scaffold hopping approach towards various AFQ-056 analogs as potent metabotropic glutamate receptor 5 negative allosteric modulators, Bioorg Med Chem Lett, 23, 6370, 10.1016/j.bmcl.2013.09.059

10.1126/science.279.5357.1722

Kubota, 2014, mGluR1-mediated excitation of cerebellar GABAergic interneurons requires both G protein-dependent and Src-ERK1/2-dependent signaling pathways, PLoS One, 9, e106316, 10.1371/journal.pone.0106316

Kufahl, 2012, Positive allosteric modulation of mGluR5 accelerates extinction learning but not relearning following methamphetamine self-administration, Front Pharmacol, 3, 194, 10.3389/fphar.2012.00194

10.1111/j.1471-4159.2010.06761.x

10.3109/00207454.2013.841685

10.1074/jbc.M111.301366

10.1074/jbc.M708551200

10.1074/jbc.M113.475863

10.1016/j.neuropharm.2008.06.073

10.1038/35039564

10.1038/nn.3181

10.1016/0014-2999(95)00868-3

Lavreysen, 2015, Pharmacological and pharmacokinetic properties of JNJ-40411813, a positive allosteric modulator of the mGlu2 receptor, Pharmacol Res Perspect, 3, e00096, 10.1002/prp2.96

10.1124/mol.63.5.1082

10.1124/jpet.113.204990

10.1016/j.neuropharm.2004.08.007

Lax, 2014, The mGluR5 antagonist fenobam induces analgesic conditioned place preference in mice with spared nerve injury, PLoS One, 9, e103524, 10.1371/journal.pone.0103524

10.1016/j.phrs.2016.12.006

10.1016/j.tips.2007.06.004

Lebois, 2008, Neither typical nor atypical: LY404039 provides proof of concept that selective targeting of mGluR2/3 receptors is a valid mechanism for obtaining antipsychotic efficacy, Curr Top Med Chem, 8, 1480, 10.2174/156802608786264209

Lebourgeois, 2018, Pharmacological activation of mGlu4 and mGlu7 receptors, by LSP2-9166, reduces ethanol consumption and relapse in rat, Neuropharmacology, 133, 163, 10.1016/j.neuropharm.2018.01.031

10.1016/j.celrep.2020.107605

10.1073/pnas.0712033105

Lee, 2016, The mGluR5 antagonist MPEP suppresses the expression and reinstatement, but not the acquisition, of the ethanol-conditioned place preference in mice, Pharmacol Biochem Behav, 140, 33, 10.1016/j.pbb.2015.10.015

10.1016/j.ejphar.2010.08.038

10.1124/jpet.112.196063

10.1074/jbc.M002822200

10.1073/pnas.1619652114

Levitz, 2016, Mechanism of assembly and cooperativity of homomeric and heteromeric metabotropic glutamate receptors, Neuron, 92, 143, 10.1016/j.neuron.2016.08.036

10.1038/nn.3346

Li, 2015, LY395756, an mGluR2 agonist and mGluR3 antagonist, enhances NMDA receptor expression and function in the normal adult rat prefrontal cortex, but fails to improve working memory and reverse MK801-induced working memory impairment, Exp Neurol, 273, 190, 10.1016/j.expneurol.2015.08.019

Li, 2016, Attenuation of nicotine-taking and nicotine-seeking behavior by the mGlu2 receptor positive allosteric modulators AZD8418 and AZD8529 in rats, Psychopharmacology (Berl), 233, 1801, 10.1007/s00213-016-4220-2

Li, 2010, Activation of mGluR7s inhibits cocaine-induced reinstatement of drug-seeking behavior by a nucleus accumbens glutamate-mGluR2/3 mechanism in rats, J Neurochem, 114, 1368, 10.1111/j.1471-4159.2010.06851.x

10.1038/npp.2008.236

10.1038/s41598-018-22087-1

Liberatore, 2017, Permissive role for mGlu1 metabotropic glutamate receptors in excitotoxic retinal degeneration, Neuroscience, 363, 142, 10.1016/j.neuroscience.2017.09.005

10.1016/j.ejphar.2006.10.011

10.1124/jpet.111.185660

10.1016/S0028-3908(03)00200-4

Lindsley, 2016, Practical strategies and concepts in GPCR allosteric modulator discovery: recent advances with metabotropic glutamate receptors, Chem Rev, 116, 6707, 10.1021/acs.chemrev.5b00656

10.1021/jm049400d

Litman, 2016, AZD8529, a positive allosteric modulator at the mGluR2 receptor, does not improve symptoms in schizophrenia: a proof of principle study, Schizophr Res, 172, 152, 10.1016/j.schres.2016.02.001

Litschig, 1999, CPCCOEt, a noncompetitive metabotropic glutamate receptor 1 antagonist, inhibits receptor signaling without affecting glutamate binding, Mol Pharmacol, 55, 453

10.1016/0028-3908(95)00070-M

10.1124/jpet.108.136580

10.7554/eLife.26985

10.1016/j.neuroscience.2012.05.024

10.1007/s13311-014-0298-6

10.1523/JNEUROSCI.0299-07.2007

Lundström, 2016, Pharmacological and molecular characterization of the positive allosteric modulators of metabotropic glutamate receptor 2, Neuropharmacology, 111, 253, 10.1016/j.neuropharm.2016.08.032

10.1111/j.1476-5381.2011.01409.x

10.1002/cmdc.200900028

10.1523/JNEUROSCI.18-16-06138.1998

10.1038/sj.bjp.0705566

10.1016/S0896-6273(01)00375-0

10.1016/j.neuroscience.2015.08.031

Maj, 2016, The role of metabotropic glutamate receptor genes in schizophrenia, Curr Neuropharmacol, 14, 540, 10.2174/1570159X13666150514232745

10.1016/S0028-3908(03)00271-5

10.1016/0169-328X(96)00110-6

Makoff, 1997, Expression of a novel splice variant of human mGluR1 in the cerebellum, Neuroreport, 8, 2943, 10.1097/00001756-199709080-00027

10.1074/jbc.M211759200

Malherbe, 1999, Cloning and functional expression of alternative spliced variants of the human metabotropic glutamate receptor 8, Brain Res Mol Brain Res, 67, 201, 10.1016/S0169-328X(99)00050-9

Mao, 2003, Metabotropic glutamate receptor 5-regulated Elk-1 phosphorylation and immediate early gene expression in striatal neurons, J Neurochem, 85, 1006, 10.1046/j.1471-4159.2003.01750.x

10.1046/j.1471-4159.2003.01256.x

10.1152/jn.00356.2007

10.1016/j.neulet.2006.05.021

Marek, 2000, Physiological antagonism between 5-hydroxytryptamine(2A) and group II metabotropic glutamate receptors in prefrontal cortex, J Pharmacol Exp Ther, 292, 76

10.1196/annals.1300.045

10.1073/pnas.1835724100

10.1124/mol.118.113142

10.1016/J.BBR.2017.10.007

10.1111/j.1460-9568.2007.05660.x

10.1093/brain/awr137

10.1016/0092-8674(95)90354-2

Matrisciano, 2008, Synergism between fluoxetine and the mGlu2/3 receptor agonist, LY379268, in an in vitro model for antidepressant drug-induced neurogenesis, Neuropharmacology, 54, 428, 10.1016/j.neuropharm.2007.10.020

10.1901/jeab.1995.63-139

Mazzitelli, 2018, Group II metabotropic glutamate receptors: role in pain mechanisms and pain modulation, Front Mol Neurosci, 11, 383, 10.3389/fnmol.2018.00383

McColm, 2017, Evaluation of single and multiple doses of a novel mGlu2 agonist, a potential antipsychotic therapy, in healthy subjects, Br J Clin Pharmacol, 83, 1654, 10.1111/bcp.13252

McCool, 1996, Functional coupling of rat group II metabotropic glutamate receptors to an omega-conotoxin GVIA-sensitive calcium channel in human embryonic kidney 293 cells, Mol Pharmacol, 50, 912

Megens, 2014, mGlu(2) receptor-mediated modulation of conditioned avoidance behavior in rats, Eur J Pharmacol, 727, 130, 10.1016/j.ejphar.2014.01.044

10.1371/journal.pone.0026077

10.1093/jn/130.4.1007S

Metcalf, 2017, Efficacy of mGlu2 -positive allosteric modulators alone and in combination with levetiracetam in the mouse 6 Hz model of psychomotor seizures, Epilepsia, 58, 484, 10.1111/epi.13659

10.1016/j.biopsych.2013.05.038

10.1016/j.neuron.2012.03.009

10.1016/S0968-0896(02)00424-8

10.1074/jbc.M109044200

10.1074/jbc.M207531200

Minakami, 1995, The expression of two splice variants of metabotropic glutamate receptor subtype 5 in the rat brain and neuronal cells during development, J Neurochem, 65, 1536, 10.1046/j.1471-4159.1995.65041536.x

10.1006/bbrc.1993.1866

10.1006/bbrc.1994.1349

10.1006/mcne.2001.0993

10.1073/pnas.0508063102

10.1016/S0306-4522(96)00442-3

Miyashita, 2000, Extracellular Ca2+ sensitivity of mGluR1alpha associated with persistent glutamate response in transfected CHO cells, Receptors Channels, 7, 25

Miyashita, 2000, Extracellular Ca2+ sensitivity of mGluR1alpha induces an increase in the basal cAMP level by direct coupling with Gs protein in transfected CHO cells, Receptors Channels, 7, 77

10.1016/S0028-3908(02)00111-9

10.1124/mol.109.056580

Moloney, 2015, Negative allosteric modulation of the mGlu7 receptor reduces visceral hypersensitivity in a stress-sensitive rat strain, Neurobiol Stress, 2, 28, 10.1016/j.ynstr.2015.04.001

10.1021/jm980616n

Monn, 2018, Synthesis and pharmacological characterization of C4β-amide-substituted 2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylates. Identification of (1 S,2 S,4 S,5 R,6 S)-2-amino-4-[(3-methoxybenzoyl)amino]bicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY2794193), a highly potent and selective mGlu3 receptor agonist, J Med Chem, 61, 2303, 10.1021/acs.jmedchem.7b01481

Monn, 2015, Synthesis and pharmacological characterization of C4-(Thiotriazolyl)-substituted-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylates. Identification of (1R,2S,4R,5R,6R)-2-amino-4-(1H-1,2,4-triazol-3-ylsulfanyl)bicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY2812223), a highly potent, functionally selective mGlu2 receptor agonist, J Med Chem, 58, 7526, 10.1021/acs.jmedchem.5b01124

10.1021/jm501612y

10.1021/jm9606756

10.1124/jpet.109.154138

Montana, 2011, Metabotropic glutamate receptor 5 antagonism with fenobam: examination of analgesic tolerance and side effect profile in mice, Anesthesiology, 115, 1239, 10.1097/ALN.0b013e318238c051

10.1097/FBP.0b013e3281f19c18

10.1016/j.neulet.2012.12.053

10.1126/scisignal.aab0467

Moreno Delgado, 2017, Pharmacological evidence for a metabotropic glutamate receptor heterodimer in neuronal cells, eLife, 6, e25233, 10.7554/eLife.25233

Moroni, 1997, Pharmacological characterization of 1-aminoindan-1,5-dicarboxylic acid, a potent mGluR1 antagonist, J Pharmacol Exp Ther, 281, 721

Motolese, 2015, Targeting type-2 metabotropic glutamate receptors to protect vulnerable hippocampal neurons against ischemic damage, Mol Brain, 8, 66, 10.1186/s13041-015-0158-2

10.1523/JNEUROSCI.4322-05.2006

10.1038/jcbfm.2010.201

10.1124/mol.65.6.1507

Murat, 2019, 5-HT2A receptor-dependent phosphorylation of mGlu2 receptor at Serine 843 promotes mGlu2 receptor-operated Gi/o signaling, Mol Psychiatry, 24, 1610, 10.1038/s41380-018-0069-6

10.1046/j.1471-4159.2000.0752590.x

10.1073/pnas.0611577104

Nadlewska, 2002, Effect of (S)-3,5-DHPG on learning, exploratory activity and anxiety in rats with experimental hypoxia, Pol J Pharmacol, 54, 11

Nakajima, 1993, Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-4-phosphonobutyrate, J Biol Chem, 268, 11868, 10.1016/S0021-9258(19)50280-0

10.1124/dmd.105.006213

Namkoong, 2006, From existing therapies to novel targets: a current view on melanoma, Front Biosci, 11, 2081, 10.2741/1951

10.1016/S0028-3908(00)00128-3

Nardecchia, 2018, Targeting mGlu5 metabotropic glutamate receptors in the treatment of cognitive dysfunction in a mouse model of phenylketonuria, Front Neurosci, 12, 154, 10.3389/fnins.2018.00154

10.1038/s41598-018-22729-4

Neto, 2018, Melanoma-associated GRM3 variants dysregulate melanosome trafficking and cAMP signaling, Pigment Cell Melanoma Res, 31, 115, 10.1111/pcmr.12610

10.1016/S0304-3959(02)00140-9

Neugebauer, 1999, Role of metabotropic glutamate receptor subtype mGluR1 in brief nociception and central sensitization of primate STT cells, J Neurophysiol, 82, 272, 10.1152/jn.1999.82.1.272

10.1016/j.neuropharm.2007.10.004

10.1124/jpet.115.226597

10.1186/1756-6606-3-4

Nicoletti, 2019, Targeting mGlu receptors for optimization of antipsychotic activity and disease-modifying effect in schizophrenia, Front Psychiatry, 10, 49, 10.3389/fpsyt.2019.00049

10.1016/0028-3908(86)90262-5

10.1124/jpet.110.170506

10.1073/pnas.0237126100

10.1146/annurev.pharmtox.011008.145533

10.1124/mol.109.058768

10.1124/mol.108.049551

10.1021/acschemneuro.6b00036

10.1016/j.bmcl.2008.08.087

10.1124/mol.112.082891

10.1124/mol.111.075184

10.1016/0092-8674(94)90151-1

10.1124/mol.117.110114

10.1124/mol.64.3.731

10.1124/jpet.103.061747

10.1136/bjo.2005.086678

O’Connor, 2013, The effects of mGlu7 receptor modulation in behavioural models sensitive to antidepressant action in two mouse strains, Behav Pharmacol, 24, 105, 10.1097/FBP.0b013e32835efc78

10.1016/j.ejphar.2010.02.059

Okamoto, 1994, Molecular characterization of a new metabotropic glutamate receptor mGluR7 coupled to inhibitory cyclic AMP signal transduction, J Biol Chem, 269, 1231, 10.1016/S0021-9258(17)42247-2

Olivero, 2017, Immuno-pharmacological characterization of group II metabotropic glutamate receptors controlling glutamate exocytosis in mouse cortex and spinal cord, Br J Pharmacol, 174, 4785, 10.1111/bph.14061

10.1016/S0960-894X(98)00329-1

10.1007/s00726-006-0317-y

10.1523/JNEUROSCI.22-09-03434.2002

10.1016/j.neuint.2006.01.020

10.1016/j.neuropharm.2008.05.007

Palazzo, 2016, Metabotropic glutamate receptor 7: from synaptic function to therapeutic implications, Curr Neuropharmacol, 14, 504, 10.2174/1570159X13666150716165323

Palazzo, 2015, MMPIP, an mGluR7-selective negative allosteric modulator, alleviates pain and normalizes affective and cognitive behavior in neuropathic mice, Pain, 156, 1060, 10.1097/j.pain.0000000000000150

10.1007/s00213-007-0856-2

10.1016/j.neuropharm.2003.09.006

10.1016/j.neuropharm.2008.06.033

Pałucha-Poniewiera, 2013, A selective mGlu7 receptor antagonist MMPIP reversed antidepressant-like effects of AMN082 in rats, Behav Brain Res, 238, 109, 10.1016/j.bbr.2012.10.004

Panaccione, 2017, Paradoxical sleep deprivation in rats causes a selective reduction in the expression of type-2 metabotropic glutamate receptors in the hippocampus, Pharmacol Res, 117, 46, 10.1016/j.phrs.2016.11.029

10.1111/jnc.12930

Pandya, 2016, Group 1 metabotropic glutamate receptors 1 and 5 form a protein complex in mouse hippocampus and cortex, Proteomics, 16, 2698, 10.1002/pmic.201500400

Park, 2019, Activation of peripheral group III metabotropic glutamate receptors inhibits pain transmission by decreasing neuronal excitability in the CFA-inflamed knee joint, Neurosci Lett, 694, 111, 10.1016/j.neulet.2018.11.033

10.1016/j.neuropharm.2012.12.003

10.1016/j.neuropharm.2010.11.013

10.1016/0014-2999(82)90331-4

10.1038/nm1632

10.1097/00004714-198204000-00010

10.1523/JNEUROSCI.16-20-06364.1996

10.1046/j.1460-9568.1999.00786.x

10.1021/jm00019a002

10.3389/fnmol.2018.00464

Perez-Benito, 2017, Molecular switches of allosteric modulation of the metabotropic glutamate 2 receptor, Structure, 25, 1153, 10.1016/j.str.2017.05.021

Perez-Garcia, 2018, PTSD-related behavioral traits in a rat model of blast-induced mTBI are reversed by the mGluR2/3 receptor antagonist BCI-838, eNeuro, 5, ENEURO.0357, 10.1523/ENEURO.0357-17.2018

10.1093/emboj/cdf313

10.1523/JNEUROSCI.20-21-07896.2000

10.1111/bph.13437

Peterlik, 2017, Blocking metabotropic glutamate receptor subtype 5 relieves maladaptive chronic stress consequences, Brain Behav Immun, 59, 79, 10.1016/j.bbi.2016.08.007

Pietraszek, 2004, Opposite influence of MPEP, an mGluR5 antagonist, on the locomotor hyperactivity induced by PCP and amphetamine, J Physiol Pharmacol, 55, 587

10.1038/nature20566

10.1016/S0014-2999(99)00258-7

10.1073/pnas.89.21.10331

10.1016/j.nbd.2007.03.003

Pitsikas, 2012, The metabotropic glutamate 2/3 receptor antagonist LY341495 differentially affects recognition memory in rats, Behav Brain Res, 230, 374, 10.1016/j.bbr.2012.02.027

10.3389/fphar.2016.00295

10.1038/nchembio.1612

10.1016/S0028-3908(99)00257-9

10.1007/s00213-008-1191-y

Podkowa, 2018, The potential antidepressant action and adverse effects profile of scopolamine co-administered with the mGlu7 receptor allosteric agonist AMN082 in mice, Neuropharmacology, 141, 214, 10.1016/j.neuropharm.2018.08.022

Podkowa, 2016, Group II mGlu receptor antagonist LY341495 enhances the antidepressant-like effects of ketamine in the forced swim test in rats, Psychopharmacology (Berl), 233, 2901, 10.1007/s00213-016-4325-7

Podkowa, 2015, A novel mGlu4 selective agonist LSP4-2022 increases behavioral despair in mouse models of antidepressant action, Neuropharmacology, 97, 338, 10.1016/j.neuropharm.2015.05.039

Ponnazhagan, 2016, The metabotropic glutamate receptor 4 positive allosteric modulator ADX88178 inhibits inflammatory responses in primary microglia, J Neuroimmune Pharmacol, 11, 231, 10.1007/s11481-016-9655-z

10.1016/S0893-133X(01)00256-1

10.1124/jpet.105.089839

Poutiainen, 2015, Co-operative binding assay for the characterization of mGlu4 allosteric modulators, Neuropharmacology, 97, 142, 10.1016/j.neuropharm.2015.05.017

10.1038/ng.950

10.1111/j.1471-4159.2004.02387.x

10.1523/JNEUROSCI.3451-13.2014

Quiroz, 2016, Efficacy and safety of basimglurant as adjunctive therapy for major depression: a randomized clinical trial, JAMA Psychiatry, 73, 675, 10.1001/jamapsychiatry.2016.0838

Rahman, 1996, Characterization of metabotropic glutamate receptor-mediated facilitation of N-methyl-D-aspartate depolarization of neocortical neurones, Br J Pharmacol, 117, 675, 10.1111/j.1476-5381.1996.tb15243.x

10.1186/s13041-015-0111-4

10.1016/S0304-3940(00)01483-X

10.1002/mds.26174

10.1523/JNEUROSCI.4974-09.2010

10.1016/j.phrs.2016.11.013

Ritter-Makinson, 2017, Group II metabotropic glutamate receptor interactions with NHERF scaffold proteins: implications for receptor localization in brain, Neuroscience, 353, 58, 10.1016/j.neuroscience.2017.03.060

10.1073/pnas.122149199

Roche, 2014, Mathematical modeling of G protein-coupled receptor function: what can we learn from empirical and mechanistic models?, Adv Exp Med Biol, 796, 159, 10.1007/978-94-007-7423-0_8

10.1074/jbc.274.36.25953

10.1016/j.bbr.2006.03.032

10.1111/j.1471-4159.2004.02887.x

10.1124/mol.110.067207

Rodriguez, 2005, A close structural analog of 2-methyl-6-(phenylethynyl)-pyridine acts as a neutral allosteric site ligand on metabotropic glutamate receptor subtype 5 and blocks the effects of multiple allosteric modulators, Mol Pharmacol, 68, 1793, 10.1124/mol.105.016139

10.1016/j.biopsych.2012.09.012

10.1038/npp.2014.245

10.1016/j.neuron.2015.03.063

10.1124/jpet.106.110809

10.1007/s00213-007-0758-3

10.1124/jpet.105.091926

10.1152/jn.00212.2013

Rouzade-Dominguez ML Pezous N David OJ Tutuian R Bruley des Varannes S Tack J Malfertheiner P Allescher HD Ufer M Rühl A (2017) The selective metabotropic glutamate receptor 5 antagonist mavoglurant (AFQ056) reduces the incidence of reflux episodes in dogs and patients with moderate to severe gastroesophageal reflux disease. Neurogastroenterol Motil 29 Available from: 10.1111/nmo.13058.

10.1096/fj.14-257287

Rovira, 2016, OptoGluNAM4.1, a photoswitchable allosteric antagonist for real-time control of mGlu4 aeceptor activity, Cell Chem Biol, 23, 929, 10.1016/j.chembiol.2016.06.013

10.1124/jpet.108.138271

Rutrick, 2017, Mavoglurant augmentation in OCD patients resistant to selective serotonin reuptake inhibitors: a proof-of-concept, randomized, placebo-controlled, phase 2 study, Adv Ther, 34, 524, 10.1007/s12325-016-0468-5

Saini, 2017, Meta-analysis supports GWAS-implicated link between GRM3 and schizophrenia risk, Transl Psychiatry, 7, e1196, 10.1038/tp.2017.172

10.1177/0269881115573403

10.1096/fj.00-0072com

10.1016/j.pbb.2008.06.006

10.1016/0306-4522(94)00464-G

10.1038/nature10945

10.1523/JNEUROSCI.21-22-08734.2001

10.1111/j.1471-4159.2005.03609.x

10.1124/jpet.109.151118

Saugstad, 1994, Cloning and expression of a new member of the L-2-amino-4-phosphonobutyric acid-sensitive class of metabotropic glutamate receptors, Mol Pharmacol, 45, 367

10.1124/mol.51.1.119

10.1523/JNEUROSCI.16-19-05979.1996

10.1016/S0028-3908(98)00027-6

10.1177/1087057110375615

10.1523/JNEUROSCI.20-15-05663.2000

10.1016/S0006-8993(97)01271-7

10.1124/mol.64.4.798

10.1006/geno.1997.4842

10.1021/jm060950g

Schoepp, 2001, Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system, J Pharmacol Exp Ther, 299, 12

10.1046/j.1471-4159.1994.63020769.x

10.1016/S0028-3908(96)00160-8

10.1080/1025389031000146773

10.1038/s41467-017-01489-1

10.1016/S0014-2999(99)00844-4

Schröder, 2008, The potent non-competitive mGlu1 receptor antagonist BAY 36-7620 differentially affects synaptic plasticity in area cornu ammonis 1 of rat hippocampal slices and impairs acquisition in the water maze task in mice, Neuroscience, 157, 385, 10.1016/j.neuroscience.2008.08.063

10.1007/s00213-005-2175-9

10.1016/S0304-3940(02)00306-3

Sebastianutto, 2020, D1-mGlu5 heteromers mediate noncanonical dopamine signaling in Parkinson’s disease, J Clin Invest, 130, 1168, 10.1172/JCI126361

10.1016/j.febslet.2008.06.010

10.1016/j.neuropharm.2012.07.001

Sekiyama, 1996, Structure-activity relationships of new agonists and antagonists of different metabotropic glutamate receptor subtypes, Br J Pharmacol, 117, 1493, 10.1111/j.1476-5381.1996.tb15312.x

10.1021/jm070400y

Selvam, 2018, Increased potency and selectivity for group III metabotropic glutamate receptor agonists binding at dual sites, J Med Chem, 61, 1969, 10.1021/acs.jmedchem.7b01438

Sengmany, 2019, Kinetic and system bias as drivers of metabotropic glutamate receptor 5 allosteric modulator pharmacology, Neuropharmacology, 149, 83, 10.1016/j.neuropharm.2019.02.005

Sengmany, 2017, Biased allosteric agonism and modulation of metabotropic glutamate receptor 5: implications for optimizing preclinical neuroscience drug discovery, Neuropharmacology, 115, 60, 10.1016/j.neuropharm.2016.07.001

Sengmany, 2020, Differential contribution of metabotropic glutamate receptor 5 common allosteric binding site residues to biased allosteric agonism, Biochem Pharmacol, 177, 114011, 10.1016/j.bcp.2020.114011

10.1111/j.1460-9568.2007.05815.x

10.1016/S0028-3908(02)00361-1

10.1046/j.1471-4159.1999.721441.x

Shah, 2019, Serotonin and glutamate interactions in preclinical schizophrenia models, ACS Chem Neurosci, 10, 3068, 10.1021/acschemneuro.9b00044

Shannon, 2005, Anticonvulsant effects of LY456236, a selective mGlu1 receptor antagonist, Neuropharmacology, 49, 188, 10.1016/j.neuropharm.2005.05.010

10.1111/j.1530-0277.2007.00554.x

10.1085/jgp.109.4.477

10.1016/j.neuropharm.2008.06.047

10.1016/j.bmcl.2012.04.112

10.1073/pnas.1117433109

10.1523/JNEUROSCI.17-19-07503.1997

10.1016/0028-3908(74)90056-2

10.1038/npp.2009.201

Silverstein, 1986, The glutamate analogue quisqualic acid is neurotoxic in striatum and hippocampus of immature rat brain, Neurosci Lett, 71, 13, 10.1016/0304-3940(86)90249-1

10.1111/j.1476-5381.2012.01901.x

10.1111/bph.12254

10.1016/j.ejphar.2004.03.055

10.1038/nn746

Soloviev, 1999, Identification, cloning and analysis of expression of a new alternatively spliced form of the metabotropic glutamate receptor mGluR1 mRNA1, Biochim Biophys Acta, 1446, 161, 10.1016/S0167-4781(99)00083-4

10.1111/exd.12048

Spampinato, 2018, Metabotropic glutamate receptors in glial cells: a new potential target for neuroprotection?, Front Mol Neurosci, 11, 414, 10.3389/fnmol.2018.00414

Stachowicz, 2006, Anxiolytic-like effects of group III mGlu receptor ligands in the hippocampus involve GABAA signaling, Pharmacol Rep, 58, 820

10.1016/j.ejphar.2004.07.001

10.1007/s00213-004-2056-7

10.1016/j.bbr.2005.05.010

10.1002/mds.25561

10.1038/325531a0

10.1074/jbc.M112.439513

10.1124/jpet.110.177378

10.1254/jphs.09011FP

10.1124/jpet.106.116574

10.1016/j.neuroscience.2010.04.016

10.1124/jpet.107.124701

10.1124/jpet.113.211185

10.1124/jpet.114.215137

Szczurowska, 2012, Positive allosteric modulator of mGluR4 PHCCC exhibits proconvulsant action in three models of epileptic seizures in immature rats, Physiol Res, 61, 619, 10.33549/physiolres.932336

10.1016/0896-6273(92)90118-W

Tassin, 2016, Phasic and Tonic mGlu7 receptor activity modulates the thalamocortical network, Front Neural Circuits, 10, 31, 10.3389/fncir.2016.00031

10.1007/s002130100798

10.1211/0022357021778862

Tateyama, 2008, Regulatory role of C-terminus in the G-protein coupling of the metabotropic glutamate receptor 1, J Neurochem, 107, 1036, 10.1111/j.1471-4159.2008.05672.x

Techlovská, 2014, Metabotropic glutamate receptor 1 splice variants mGluR1a and mGluR1b combine in mGluR1a/b dimers in vivo, Neuropharmacology, 86, 329, 10.1016/j.neuropharm.2014.08.011

10.1523/JNEUROSCI.14-05-03005.1994

10.1016/0028-3908(96)84635-1

Thomsen, 1997, The L-AP4 receptor, Gen Pharmacol, 29, 151, 10.1016/S0306-3623(96)00417-X

10.1016/S0028-3908(98)00138-5

10.1016/0922-4106(92)90018-Q

10.1016/S0028-3908(96)00153-0

Thomsen, 1993, Serine-O-phosphate has affinity for type IV, but not type I, metabotropic glutamate receptor, Neuroreport, 4, 1099

10.1002/mds.26659

10.1016/0028-3908(95)00083-I

10.1016/S0091-3057(02)00850-X

Tomita, 2000, The effects of DCG-IV and L-CCG-1 upon phencyclidine (PCP)-induced locomotion and behavioral changes in mice, Ann N Y Acad Sci, 914, 284, 10.1111/j.1749-6632.2000.tb05203.x

10.1111/j.1476-5381.1996.tb15750.x

Tora, 2018, Chloride ions stabilize the glutamate-induced active state of the metabotropic glutamate receptor 3, Neuropharmacology, 140, 275, 10.1016/j.neuropharm.2018.08.011

10.1096/fj.14-269746

Trenkwalder, 2016, Mavoglurant in Parkinson’s patients with l-Dopa-induced dyskinesias: Two randomized phase 2 studies, Mov Disord, 31, 1054, 10.1002/mds.26585

Tresadern, 2017, Identification of allosteric modulators of metabotropic glutamate 7 receptor using proteochemometric modeling, J Chem Inf Model, 57, 2976, 10.1021/acs.jcim.7b00338

10.1523/JNEUROSCI.12-06-02043.1992

10.1073/pnas.052708599

10.1016/S0896-6273(00)80810-7

10.1038/s41386-018-0049-1

10.1113/jphysiol.2003.056812

10.1111/jnc.13038

10.1111/j.1476-5381.2012.02090.x

10.1016/j.neuron.2013.06.036

10.1002/jcp.10081

10.1016/S0378-1119(00)00547-3

10.1097/00001756-200108280-00024

10.1371/journal.pbio.1002143

10.1002/1096-9861(20000731)423:3<402::AID-CNE4>3.0.CO;2-E

Varnäs, 2020, The pro-psychotic metabotropic glutamate receptor compounds fenobam and AZD9272 share binding sites with monoamine oxidase-B inhibitors in humans, Neuropharmacology, 162, 107809, 10.1016/j.neuropharm.2019.107809

10.1007/s00213-005-2143-4

Vergouts, 2017, PKC epsilon-dependent calcium oscillations associated with metabotropic glutamate receptor 5 prevent agonist-mediated receptor desensitization in astrocytes, J Neurochem, 141, 387, 10.1111/jnc.14007

10.1002/(SICI)1098-2396(199803)28:3<220::AID-SYN5>3.0.CO;2-C

10.1124/jpet.106.108159

10.1523/JNEUROSCI.1221-13.2013

10.1111/j.1601-183X.2011.00763.x

10.1152/jn.00383.2005

Volpi, 2018, Opportunities and challenges in drug discovery targeting metabotropic glutamate receptor 4, Expert Opin Drug Discov, 13, 411, 10.1080/17460441.2018.1443076

Volpi, 2016, Allosteric modulation of metabotropic glutamate receptor 4 activates IDO1-dependent, immunoregulatory signaling in dendritic cells, Neuropharmacology, 102, 59, 10.1016/j.neuropharm.2015.10.036

10.1016/j.bmc.2014.09.033

10.1002/(SICI)1096-9861(19980420)393:4<493::AID-CNE8>3.0.CO;2-W

Wagner, 2015, Homer1/mGluR5 activity moderates vulnerability to chronic social stress, Neuropsychopharmacology, 40, 1222, 10.1038/npp.2014.308

10.1016/j.coph.2014.11.003

10.1073/pnas.1416196112

10.1097/WNR.0b013e3283453843

10.1126/science.1178496

10.1016/0165-6147(94)90028-0

10.1016/j.ajhg.2017.08.005

10.1007/s00213-012-2804-z

10.1111/j.1476-5381.2008.00078.x

Wenthur, 2014, Synthesis and SAR of substituted pyrazolo[1,5-a]quinazolines as dual mGlu(2)/mGlu(3) NAMs, Bioorg Med Chem Lett, 24, 2693, 10.1016/j.bmcl.2014.04.051

10.1016/j.nbd.2018.08.008

10.1210/me.2009-0041

10.1007/s00213-011-2502-2

10.1016/j.neuropharm.2011.07.042

10.1016/j.neuropharm.2010.08.008

10.1111/j.1527-3458.2002.tb00218.x

10.1124/jpet.116.233627

Woltering, 2008, Synthesis and characterization of 1,3-dihydro-benzo[b][1,4]diazepin-2-one derivatives: Part 3. New potent non-competitive metabotropic glutamate receptor 2/3 antagonists, Bioorg Med Chem Lett, 18, 2725, 10.1016/j.bmcl.2008.02.076

10.1016/j.bmcl.2010.09.125

10.1021/bi200129s

10.1007/s00213-007-0974-x

Woźniak, 2017, Neurochemical and behavioral studies on the 5-HT1A-dependent antipsychotic action of the mGlu4 receptor agonist LSP4-2022, Neuropharmacology, 115, 149, 10.1016/j.neuropharm.2016.06.025

10.1016/j.neuropharm.2012.01.019

10.1111/j.1471-4159.2005.03569.x

10.1126/science.1249489

10.1016/S0169-328X(97)00277-5

10.1038/npp.2011.12

Xiang, 2019, mGlu5 Positive allosteric modulators facilitate long-term potentiation via disinhibition mediated by mGlu5-endocannabinoid signaling, ACS Pharmacol Transl Sci, 2, 198, 10.1021/acsptsci.9b00017

Xing, 2018, Juvenile treatment with mGluR2/3 agonist prevents schizophrenia-like phenotypes in adult by acting through GSK3β, Neuropharmacology, 137, 359, 10.1016/j.neuropharm.2018.05.019

10.1073/pnas.0404384101

10.1523/JNEUROSCI.5716-08.2009

10.1523/JNEUROSCI.1508-12.2013

10.1038/nchembio.1711

10.2967/jnumed.112.105908

10.1097/WCO.0000000000000703

10.1007/s12035-016-0225-4

10.1523/JNEUROSCI.4423-05.2006

10.1523/JNEUROSCI.1129-13.2014

10.1016/j.neuropharm.2012.03.003

Yohn SE Foster DJ Covey DP Moehle MS Galbraith J Garcia-Barrantes PM Cho HP Bubser M Blobaum AL Joffe ME (2018) Activation of the mGlu1 metabotropic glutamate receptor has antipsychotic-like effects and is required for efficacy of M4 muscarinic receptor allosteric modulators. Mol Psychiatry DOI: 10.1038/s41380-018-0206-2 [published ahead of print].

10.1016/j.neulet.2009.06.056

10.1016/S0006-8993(97)01106-2

10.1016/0028-3908(95)00071-D

10.1038/npp.2017.177

Zalewska, 1997, Behavioral activity of 1S,3R-ACPD, an agonist of metabotropic glutamate receptors, Pol J Pharmacol, 49, 239

Zalewska-Wińska, 2000, Behavioural activity of (S)-3,5-DHPG, a selective agonist of group I metabotropic glutamate receptors, Pharmacol Res, 42, 239, 10.1006/phrs.2000.0683

10.1002/humu.20499

10.1016/j.preteyeres.2014.09.001

Zeleznikow-Johnston, 2018, Touchscreen testing reveals clinically relevant cognitive abnormalities in a mouse model of schizophrenia lacking metabotropic glutamate receptor 5, Sci Rep, 8, 16412, 10.1038/s41598-018-33929-3

10.1111/j.1365-2036.2011.04596.x

10.1111/j.1365-2982.2010.01484.x

10.1124/jpet.105.090308

Zhang, 2019, Activation of type 4 metabotropic glutamate receptor promotes cell apoptosis and inhibits proliferation in bladder cancer, J Cell Physiol, 234, 2741, 10.1002/jcp.27089

Zhang, 2015, Activation of mGluR5 attenuates microglial activation and neuronal apoptosis in early brain injury after experimental subarachnoid hemorrhage in rats, Neurochem Res, 40, 1121, 10.1007/s11064-015-1572-7

10.1021/jm0504407

10.1002/jnr.20897

10.1016/j.ejphar.2007.09.047

10.1038/s41593-018-0156-7

Zolkowska, 2016, Influence of MPEP (a selective mGluR5 antagonist) on the anticonvulsant action of novel antiepileptic drugs against maximal electroshock-induced seizures in mice, Prog Neuropsychopharmacol Biol Psychiatry, 65, 172, 10.1016/j.pnpbp.2015.10.005

Zuena, 2018, In vivo non-radioactive assessment of mGlu5 receptor-activated polyphosphoinositide hydrolysis in response to systemic administration of a positive allosteric modulator, Front Pharmacol, 9, 804, 10.3389/fphar.2018.00804

Zussy, 2018, Dynamic modulation of inflammatory pain-related affective and sensory symptoms by optical control of amygdala metabotropic glutamate receptor 4, Mol Psychiatry, 23, 509, 10.1038/mp.2016.223