International Assets Allocation with Risk Management via Multi-Stage Stochastic Programming
Tóm tắt
In this paper, we develop a multi-stage stochastic programming model for dynamic international portfolio risk management with options in an integrated view. Upon scenario trees, the model can automatically compute the optimal hedging strategies, which provides rolling and dynamic decisions for how much option positions should be established and how much should be liquidated, while simultaneously allocating the corresponding underlying assets. Extensive numerical analyses strongly verify the effectiveness of the model, especially in market downturns, and support the computational feasibility and performance of the model.
Tài liệu tham khảo
Abdelaziz, F. B., Aouni, B., & Fayedh, R. E. (2007). Multi-objective stochastic programming for portfolio selection. European Journal of Operational Research, 177(3), 1811–1823.
Aliprantis, C., Brown, D., & Werner, J. (2000). Minimum-cost portfolio insurance. Journal of Economic Dynamics and Control, 24(11–12), 1703–1719.
Blomvall, J., & Lindberg, P. (2003). Back-testing the performance of an actively managed option portfolio at the Swedish stock market, 1990–1999. Journal of Economic Dynamics and Control, 27(6), 1099–1112.
Brennan, M., & Cao, H. (1996). Information, trade, and derivative securities. Review of Financial Studies, 9(1), 163–208.
Dupacová, J., Gröwe-Kuska, N., & Römisch, W. (2003). Scenario reduction in stochastic programming: An approach using probability metrics. Mathematical Programming, Series A, 95, 493–511.
Ferstl, R., & Weissensteiner, A. (2010). Cash management using multi-stage stochastic programming. Quantitative Finance, 10(2), 209–219.
Ferstl, R., & Weissensteiner, A. (2011). Asset-liability management under time-varying investment opportunities. Journal of Banking and Finance, 35(1), 182–192.
Follmer, H., & Sondermann, D. (1986). Hedging of non-redundant contingent claims. In W. Hildenbrand & A. Mas-Colell (Eds.), Contributions to mathematical economics (pp. 205–223). Amsterdam: North-Holland.
Gaivoronski, A. A., Krylov, S., & Van der Wijst, N. (2005). Optimal portfolio selection and dynamic benchmark traking. European Journal of Operational Research, 163(1), 115–131.
Gao, P. W. (2009). Options strategies with the risk adjustment. European Journal of Operation Research, 192, 975–980.
Geyer, A., Hanke, M., & Weissensteiner, A. (2011). Scenario tree generation and multi-asset financial optimization problems. Working paper. Available at SSRN. http://ssrn.com/abstract=1857411 or http://dx.doi.org/10.2139/ssrn.1857411.
Gondzio, J., Kouwenberg, R., & Vorst, T. (2003). Hedging options under transaction costs and stochastic volatility. Journal of Economic Dynamics and Control, 27(6), 1045–1068.
Grinold, R. C. (1999). Mean-variance and scenario-based approaches to portfolio selection. The Journal of Portfolio Management, 25(2), 10–22.
Grinblatt, M., & Titman, S. (1993). Performance measurement without benchmarks: An examination of mutual fund returns. Journal of Business, 66(1), 47–68.
Harrison, J. M., & Pliska, S. R. (1981). Martingales and stochastic integrals in the theory of continuous trading. Stochastic Processes and their Applications, 11, 215–260.
Haugh, M., & Lo, A. (2001). Asset allocation and derivatives. Quantitative Finance, 1(1), 45–72.
Heitsch, H., & Römisch, W. (2003). Scenario reduction algorithms in stochastic programming. Computational Optimization and Applications, 24, 187–206.
Hochreiter, R., & Pflug, G. Ch. (2007). Financial scenario generation for stochastic multi-stage decision processes as facility location problems. Annals of Operations Research, 152(1), 257–272.
Horasanh, M. (2008). Hedging strategy for a portfolio of options and stocks with linear programming. Applied Mathematics and Computation, 199, 804–810.
Høyland, K., Kaut, M., & Stein, W. (2003). A heuristic for moment-matching scenario generation. Computational Optimization and Applications, 24(2–3), 169–185.
Høyland, K., & Wallance, S. W. (2001). Generating scenario trees for multistage decision problems. Management Science, 47(2), 295–307.
Huang, D. S., Zhu, S. S., Fabozzi, F. J., & Fukushima, M. (2008). Portfolio selection with uncertain exit time: A robust CVaR approach. Journal of Economic Dynamics and Control, 32(2), 594–623.
Huang, D. S., Zhu, S. S., Fabozzi, F. J., & Fukushima, M. (2010). Portfolio selection under distributional uncertainty: A relative robust CVaR approach. European Journal of Operational Research, 203(1), 185–194.
Klaassen, P. (2002). Comment on “Generating scenario trees for multistage decision problems”. Management Science, 48(11), 1512–1516.
Korn, R., & Trautmann, S. (1999). Optimal control of option portfolios and applications. OR Spektrum, 21, 123–146.
Liu, J., & Pan, J. (2003). Dynamics derivative strategies. Journal of Financial Economics, 69(3), 401–430.
Merton, R., Scholes, M., & Gladstone, M. (1978). The return and risk of alternative call option portfolio investment strategies. Journal of Business, 51, 183–242.
Muck, M. (2010). Trading strategies with partial access to the derivatives market. Journal of Banking and Finance, 34(6), 1288–1298.
Neuberger, A., & Hodges, S. (2002). How large are the benefits from using options? Journal of Financial and Quantitative Analysis, 37(2), 202–220.
Papahristodoulou, C. (2004). Option strategies with linear programming. European Journal of Operation Research, 157, 246–256.
Pflug, G. C. (2001). Optimal scenario tree generation for multiperiod financial planning. Mathematical Programming, 89(2), 251–271.
Rasmussen, K. M., & Clausen, J. (2007). Mortgage loan portfolio optimization using multi-stage stochastic programming. Journal of Economic Dynamics and Control, 31(3), 742–766.
Scheuenstuhl, G., & Zagst, R. (2008). Integrated portfolio management with options. European Journal of Operational Research, 185(3), 1477–1500.
Sortino, F. A., & Van der Meer, R. (1991). Downside risk: Capturing what’s at stake in investment situations. Journal of Portfolio Management, 17(4), 27–31.
Sinha, P., & Johar, A. (2010). Hedging Greeks for a portfolio of options using linear and quadratic programming. The Journal of Prediction Markets, 4(1), 17–26.
Sortina, F., Van der Meer, R., & Plantinga, A. (1999). The Dutch triangle—A framework to measure upside potential relative to downside risk. Journal of Portfolio Management, 26(1), 50–58.
Topaloglou, N., Vladimirou, H., & Zenios, S. A. (2002). CVaR models with selective hedging for international asset allocation. Journal of Banking and Finance, 26(7), 1535–1561.
Topaloglou, N., Vladimirou, H., & Zenios, S. A. (2008a). A dynamic stochastic programming model for international portfolio management. European Journal of Operational Research, 185, 1501–1524.
Topaloglou, N., Vladimirou, H., & Zenios, S. A. (2008b). Pricing options on scenario trees. Journal of Banking and Finance, 32(2), 283–298.
Topaloglou, N., Vladimirou, H., & Zenios, S. A. (2011). Optimizing international portfolios with options and forwards. Journal of Banking and Finance, 35(12), 3188–3201.
Zhao, Y., & Ziemba, W. (2008). Calculating risk neutral probabilities and optimal portfolio policies in a dynamic investment model with downside risk control. European Journal of Operational Research, 185(3), 1525–1540.