Phương pháp tăng trưởng tinh thể perovskite bằng cách trộn lẫn hạt nano được bao bọc bởi tiền chất cho các tế bào quang điện perovskite hợp phương phẳng hiệu suất cao

Energy and Environmental Science - Tập 9 Số 4 - Trang 1282-1289
Shao‐Sian Li1,2,3,4, C. T. Chang5,2,3,4, Ying‐Chiao Wang1,2,3,4, Chung‐Wei Lin1,2,3,4, Di‐Yan Wang6,7,3,4, Jou-Chun Lin6,7,3,4, Chia‐Chun Chen6,8,9,3,4, Hwo‐Shuenn Sheu10,11,4, H.-J. Chia12,10,13,4, Wei‐Ru Wu10,11,4, U‐Ser Jeng14,12,11,13,4, Chi‐Te Liang5,2,3,4, Raman Sankar15,3,4,16,17, F. C. Chou15,3,4,16,17, Chun‐Wei Chen1,3,4,16,17
1Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan
3Taipei
4Taiwan
5Department of Physics, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan
6Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chow Rd, Taipei, Taiwan
8Institute of Atomic and Molecular Sciences
9Institute of Atomic and Molecular Sciences, Academia Sinica, No. 1, Sec. 4, Roosevelt Rd, Taipei, Taiwan
10Hsinchu
11National Synchrotron Radiation Research Center, No. 101, Hsin-An Road, Hsinchu, Taiwan
12Chemical Engineering Department, National Tsing-Hua University, Hsinchu, Taiwan
13National Tsing-Hua University
14Chemical Engineering Department
15Center for Condensed Matter Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan
16Taiwan Consortium of Emergent Crystalline Materials (TCECM)
17Taiwan Consortium of Emergent Crystalline Materials (TCECM), Ministry of Science and Technology, No. 1, Sec. 4, Roosevelt Rd, Taipei, Taiwan

Tóm tắt

Một phương pháp mới để điều chỉnh sự hình thành và phát triển của tinh thể perovskite bằng cách trộn lẫn các hạt nano được bao bọc bởi tiền chất đã được báo cáo.

Từ khóa


Tài liệu tham khảo

Wehrenfennig, 2014, J. Phys. Chem. Lett., 5, 1300, 10.1021/jz500434p

Sun, 2014, Energy Environ. Sci., 7, 399, 10.1039/C3EE43161D

Green, 2014, Nat. Photonics, 8, 506, 10.1038/nphoton.2014.134

Lin, 2014, Nat. Photonics, 9, 106, 10.1038/nphoton.2014.284

Xing, 2013, Science, 342, 344, 10.1126/science.1243167

Stranks, 2013, Science, 342, 341, 10.1126/science.1243982

Berhe, 2016, Energy Environ. Sci., 10.1039/C5EE02733K

Gibbs, 1878, Am. J. Sci., 441, 10.2475/ajs.s3-16.96.441

Saliba, 2014, J. Phys. Chem. C, 118, 17171, 10.1021/jp500717w

Eperon, 2014, Adv. Funct. Mater., 24, 151, 10.1002/adfm.201302090

Hsu, 2014, Nanoscale, 6, 10281, 10.1039/C4NR02751E

Wu, 2014, Energy Environ. Sci., 7, 2934, 10.1039/C4EE01624F

Jeon, 2014, Nat. Mater., 13, 897, 10.1038/nmat4014

Kim, 2014, Nanoscale, 6, 6679, 10.1039/c4nr00130c

Song, 2015, Appl. Phys. Lett., 106, 033901, 10.1063/1.4906073

Chang, 2015, ACS Appl. Mater. Interfaces, 7, 4955, 10.1021/acsami.5b00052

Liang, 2014, Adv. Mater., 26, 3748, 10.1002/adma.201400231

Zuo, 2014, Nanoscale, 6, 9935, 10.1039/C4NR02425G

Hines, 2003, Adv. Mater., 15, 1844, 10.1002/adma.200305395

Zhao, 2010, ACS Nano, 4, 3743, 10.1021/nn100129j

Ning, 2014, ACS Nano, 8, 10321, 10.1021/nn503569p

Kim, 2014, J. Phys. Chem. Lett., 5, 4002, 10.1021/jz502092x

Ning, 2015, Nature, 523, 324, 10.1038/nature14563

Dirin, 2014, J. Am. Chem. Soc., 136, 6550, 10.1021/ja5006288

Li, 2015, Nanoscale, 7, 14532, 10.1039/C5NR04076K

Woo, 2014, J. Am. Chem. Soc., 136, 8883, 10.1021/ja503957r

MingáLau, 2005, J. Mater. Chem., 15, 4555, 10.1039/b510077a

Zhang, 2015, Nat. Commun., 6, 6142, 10.1038/ncomms7142

Mitzi, 2001, J. Chem. Soc., Dalton Trans., 1, 10.1039/b007070j

Jeng, 2009, J. Appl. Crystallogr., 43, 110, 10.1107/S0021889809043271

Liu, 2014, J. Mater. Chem. A, 2, 20760, 10.1039/C4TA04804K

Wu, 2011, ACS Nano, 5, 6233, 10.1021/nn2010816

Haugeneder, 1999, Phys. Rev. B: Condens. Matter Mater. Phys., 59, 15346, 10.1103/PhysRevB.59.15346

Lunt, 2010, Adv. Mater., 22, 1233, 10.1002/adma.200902827

Najafov, 2010, Nat. Mater., 9, 938, 10.1038/nmat2872

Zhitomirsky, 2013, ACS Nano, 7, 5282, 10.1021/nn402197a

Kroeze, 2003, J. Phys. Chem. B, 107, 7696, 10.1021/jp0217738