Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nhịn ăn ngắt quãng hỗ trợ sự cân bằng của thành phần vi sinh vật đường ruột
International Microbiology - 2022
Tóm tắt
Có một lượng nghiên cứu chi tiết ngày càng tăng cho thấy rằng nhịn ăn ngắt quãng thực chất là một hoạt động thanh lọc về mặt sức khỏe. Đặc biệt là kể từ khi các ứng dụng kéo dài hơn 16 giờ kích hoạt quá trình tự thực bào, nó tiếp tục tác động đến tất cả các hệ thống mô và cơ quan sau cử động tái sinh bắt đầu từ cấp độ tế bào. Tương tự, ngày càng dễ hiểu hơn rằng vi sinh vật đường ruột (GM) có nhiều ảnh hưởng tích cực đến tất cả các hệ thống mô và cơ quan. Mặc dù GM bị ảnh hưởng bởi nhiều yếu tố khác nhau, nhưng thói quen ăn uống được báo cáo là yếu tố hiệu quả nhất. Do đó, việc điều tra ảnh hưởng của các phương pháp nhịn ăn khác nhau đến GM, điều này có nhiều lợi ích cho sức khỏe, là rất quan trọng. Bài nghiên cứu này nhằm xác định tác động của nhịn ăn ngắt quãng 18 giờ trong 5 tuần đối với việc hình thành GM. Một con chuột đực Wistar 12 tháng tuổi đã được chọn làm cơ sở mô hình trong nghiên cứu. Vào cuối áp dụng, bản metagenome đã được áp dụng cho nội dung manh tràng của mô ruột lấy từ những con vật bị hiến tế. Thực hành nhịn ăn ngắt quãng dẫn đến sự gia tăng đa dạng alpha, điều này thể hiện sự đa dạng vi khuẩn đáng kể, sự ổn định của tỷ lệ Firmicutes và Bacteroidetes (F/B), và việc định hình lại các giá trị có tỷ lệ cao nhất ở tất cả các giai đoạn phân loại, đặc biệt ở cấp độ họ, giống và loài. Kết quả phân tích cho thấy chương trình nhịn ăn ngắt quãng được ưa chuộng giúp cân bằng thành phần GM. Nghiên cứu này là một ví dụ quan trọng cho thấy mối liên hệ tích cực mạnh mẽ giữa nhịn ăn ngắt quãng và GM.
Từ khóa
#nhịn ăn ngắt quãng #vi sinh vật đường ruột #tự thực bào #đa dạng alpha #Firmicutes #BacteroidetesTài liệu tham khảo
Ai D, Pan H, Li X, Gao Y, Liu G, Xia LC (2019) Identifying gut microbiota associated with colorectal cancer using a zero-inflated lognormal model. Front Microbiol 10:826
Ali I, Liu K, Long D, Faisal S, Hilal MG, Ali I, Huang X, Long R (2021) Ramadan fasting leads to shifts in human gut microbiota structured by dietary composition. Front Microbiol. https://doi.org/10.3389/fmicb.2021.642999
Arias L, Goig GA, Cardona P, Torres-Puente M, Díaz J, Rosales Y, Garcia E, Tapia G, Comas I, Vilaplana C, Cardona PJ (2019) Influence of gut microbiota on progression to tuberculosis generated by high fat diet-induced obesity in C3HeB/FeJ mice. Front Immunol 10:1–18
Boutard M, Cerisy T, Nogue P-Y, Alberti A, Weissenbach J, Salanoubat M, Tolonen AC (2014) Functional diversity of carbohydrate-active enzymes enabling a bacterium to ferment plant biomass. PLoS Genet 10:e1004773
Cani PD (2018) Human gut microbiome: hopes, threats and promises. Gut 67:1716–1725
Cenit MC, Sanz Y, Codoñer-Franch P (2017) Influence of gut microbiota on neuropsychiatric disorders. World J Gastroenterol 23:5486–5498
Ceylani T, Jakubowska-Doğru E, Gurbanov R, Teker HT, Gozen AG (2018) The effects of repeated antibiotic administration to juvenile BALB/c mice on the microbiota status and animal behavior at the adult age. Heliyon 4:e00644
Ceylani T, Taner H, Samgane G, Gurbanov R (2022) Intermittent fasting-induced biomolecular modifications in rat tissues detected by ATR-FTIR spectroscopy and machine learning algorithms. Anal Biochem 654:114825
Chang D-H, Rhee M-S, Ahn S, Bang B-H, Oh JE, Lee HK, Kim B-C (2015) Faecalibaculum rodentium gen. nov., sp. nov., isolated from the faeces of a laboratory mouse. Antonie Van Leeuwenhoek 108:1309–1318
Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 13:260–270
Cho D-Y, Skinner D, Lim DJ, Mclemore JG, Koch CG, Zhang S, Swords WE, Hunter R, Crossman DK, Crowley MR, Grayson JW, Rowe SM, Woodworth BA (2020) The impact of Lactococcus lactis (probiotic nasal rinse) co-culture on growth of patient-derived strains of Pseudomonas aeruginosa. Int Forum Allergy Rhinol 10:444–449
Cignarella F, Cantoni C, Ghezzi L, Salter A, Dorsett Y, Chen L, Phillips D, Weinstock GM, Fontana L, Cross AH, Zhou Y, Piccio L (2018) Intermittent fasting confers protection in CNS autoimmunity by altering the gut microbiota. Cell Metab 27:1222-1235.e6
Cresci GA, Bawden E (2015) Gut microbiome: what we do and don’t know. Nutr Clin Pract off Publ Am Soc Parenter Enter Nutr 30:734–746
Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13:701–712
de Cabo R, Mattson MP (2019) Effects of intermittent fasting on health, aging, and disease. N Engl J Med 381:2541–2551
Fan Y, Pedersen O (2021) Gut microbiota in human metabolic health and disease. Nat Rev Microbiol 19:55–71
Flint HJ, Scott KP, Louis P, Duncan SH (2012) The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 9:577–589
Fraumene C, Manghina V, Cadoni E, Marongiu F, Abbondio M, Serra M, Palomba A, Tanca A, Laconi E, Uzzau S (2018) Caloric restriction promotes rapid expansion and long-lasting increase of Lactobacillus in the rat fecal microbiota. Gut Microbes 9:104–114
Gianchecchi E, Fierabracci A (2019) Recent advances on microbiota involvement in the pathogenesis of autoimmunity. Int J Mol Sci. https://doi.org/10.3390/ijms20020283
Gurbanov R, Kabaoğlu U, Yağcı T (2022) Metagenomic analysis of intestinal microbiota in wild rats living in urban and rural habitats. Folia Microbiol (praha) 67:469–477
Haas JT, Staels B (2017) Fasting the microbiota to improve metabolism? Cell Metab 26:584–585
Heiman ML, Greenway FL (2016) A healthy gastrointestinal microbiome is dependent on dietary diversity. Mol Metab 5:317–320
Hugerth LW, Andreasson A, Talley NJ, Forsberg AM, Kjellström L, Schmidt PT, Agreus L, Engstrand L (2020) No distinct microbiome signature of irritable bowel syndrome found in a Swedish random population. Gut 69:1076–1084
Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214
Jain N, Walker WA (2015) Diet and host-microbial crosstalk in postnatal intestinal immune homeostasis. Nat Rev Gastroenterol Hepatol 12:14–25
Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C, Jernberg C, Björkstén B, Engstrand L, Andersson AF (2014) Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut 63:559–566
Kalamaki MS, Angelidis AS (2020) High-throughput, sequence-based analysis of the microbiota of Greek Kefir grains from two geographic regions. Food Technol Biotechnol 58:138–146
Kim S, Jazwinski SM (2018) The gut microbiota and healthy aging: a mini-review. Gerontology 64:513–520
Klement R, Pazienza V (2019) Impact of different types of diet on gut microbiota profiles and cancer prevention and treatment. Medicina (b Aires) 55:84
Li G, Xie C, Lu S, Nichols RG, Tian Y, Li L, Patel D, Ma Y, Brocker CN, Yan T, Krausz KW, Xiang R, Gavrilova O, Patterson AD, Gonzalez FJ (2017) Intermittent fasting promotes white adipose browning and decreases obesity by shaping the gut microbiota. Cell Metab 26:672-685.e4
Li Q, Hu W, Liu W-X, Zhao L-Y, Huang D, Liu X-D, Chan H, Zhang Y, Zeng J-D, Coker OO, Kang W, Ng SSM, Zhang L, Wong SH, Gin T, Chan MTV, Wu J-L, Yu J, Wu WKK (2021) Streptococcus thermophilus inhibits colorectal tumorigenesis through secreting β-galactosidase. Gastroenterology 160:1179-1193.e14
Liu Z, Dai X, Zhang H, Shi R, Hui Y, Jin X, Zhang W, Wang L, Wang Q, Wang D, Wang J, Tan X, Ren B, Liu X, Zhao T, Wang J, Pan J, Yuan T, Chu C, Lan L, Yin F, Cadenas E, Shi L, Zhao S, Liu X (2020) Gut microbiota mediates intermittent-fasting alleviation of diabetes-induced cognitive impairment. Nat Commun. https://doi.org/10.1038/s41467-020-14676-4
Lynch SV, Pedersen O (2016) The Human Intestinal Microbiome in Health and Disease. N Engl J Med 375:2369–2379
Magne F, Gotteland M, Gauthier L, Zazueta A, Pesoa S, Navarrete P, Balamurugan R (2020) The firmicutes/bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients? Nutrients. https://doi.org/10.3390/nu12051474
Matthews JA (2014) Diversity Indices. Encycl Environ Chang 1–7
Mattson MP, Longo VD, Harvie M (2017) Impact of intermittent fasting on health and disease processes. Ageing Res Rev 39:46–58
Meehan CJ, Beiko RG (2014) A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biol Evol 6:703–713
O’Toole PW, Jeffery IB (2015) Gut microbiota and aging. Science 350:1214–1215
Paoli A, Tinsley G, Bianco A, Moro T (2019) The influence of meal frequency and timing on health in humans: The role of fasting. Nutrients. https://doi.org/10.3390/nu11040719
Petersen C, Round JL (2014) Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol 16:1024–1033
Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto J-M, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Bork P, Ehrlich SD, Wang J (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65
Quigley EMM (2017) Microbiota-brain-gut axis and neurodegenerative diseases. Curr Neurol Neurosci Rep. https://doi.org/10.1007/s11910-017-0802-6
Razavi AC, Potts KS, Kelly TN, Bazzano LA (2019) Sex, gut microbiome, and cardiovascular disease risk. Biol Sex Differ 10:29
Rodríguez JM, Murphy K, Stanton C, Ross RP, Kober OI, Juge N, Avershina E, Rudi K, Narbad A, Jenmalm MC, Marchesi JR, Collado MC (2015) The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis 26:26050
Shafquat A, Joice R, Simmons SL, Huttenhower C (2014) Functional and phylogenetic assembly of microbial communities in the human microbiome. Trends Microbiol 22:261–266
Silva YP, Bernardi A, Frozza RL (2020) The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol (lausanne) 11:25
Singh R, Lakhanpal D, Kumar S, Sharma S, Kataria H, Kaur M, Kaur G (2012) Late-onset intermittent fasting dietary restriction as a potential intervention to retard age-associated brain function impairments in male rats. Age (dordr) 34:917–933
Singh R, Manchanda S, Kaur T, Kumar S, Lakhanpal D, Lakhman SS, Kaur G (2015) Middle age onset short-term intermittent fasting dietary restriction prevents brain function impairments in male Wistar rats. Biogerontology 16:775–788
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031
Vasconcelos AR, Yshii LM, Viel TA, Buck HS, Mattson MP, Scavone C, Kawamoto EM (2014) Intermittent fasting attenuates lipopolysaccharide-induced neuroinflammation and memory impairment. J Neuroinflammation 11:85
Wood DE, Salzberg SL (2014) Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biol. https://doi.org/10.1186/gb-2014-15-3-r46
Yang T, Santisteban MM, Rodriguez V, Li E, Ahmari N, Carvajal JM, Zadeh M, Gong M, Qi Y, Zubcevic J, Sahay B, Pepine CJ, Raizada MK, Mohamadzadeh M (2015) Gut dysbiosis is linked to hypertension. Hypertension 65:1331–1340
Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227
Zagato E, Pozzi C, Bertocchi A, Schioppa T, Saccheri F, Guglietta S, Fosso B, Melocchi L, Nizzoli G, Troisi J, Marzano M, Oresta B, Spadoni I, Atarashi K, Carloni S, Arioli S, Fornasa G, Asnicar F, Segata N, Guglielmetti S, Honda K, Pesole G, Vermi W, Penna G, Rescigno M (2020) Endogenous murine microbiota member Faecalibaculum rodentium and its human homologue protect from intestinal tumour growth. Nat Microbiol 5:511–524
Zarrinpar A, Chaix A, Yooseph S, Panda S (2014) Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab 20:1006–1017
Zhang J, Zhan Z, Li X, Xing A, Jiang C, Chen Y, Shi W, An L (2017) Intermittent fasting protects against Alzheimer’s disease possible through restoring aquaporin-4 polarity. Front Mol Neurosci 10:395
Zhang Y, Zhou S, Zhou Y, Yu L, Zhang L, Wang Y (2018) Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet. Epilepsy Res 145:163–168
Zheng X, Wang S, Jia W (2018) Calorie restriction and its impact on gut microbial composition and global metabolism. Front Med 12:634–644
