Intermingled basins in a two species system
Tóm tắt
We present simple examples of (competitive) two species systems with complicated dynamic behaviour. From almost all initial conditions one of the two species dies out. But the survivor is unpredictable: The basins of the two chaotic one-species attractors are everywhere dense and intermingled.
Tài liệu tham khảo
Alexander, J.C., Hunt, B.R., Kan, I., Yorke, J.A.: Intermingled basins for the triangle map. Ergodic Theory Dynam. Systems 16 (4), 651-662 (1996)
Alexander, J.C., Kan, I., Yorke, J.A., Zhiping You: Riddled basins. Intern. J. Bifurcation Chaos 2, 795–813 (1992)
Ashwin, P., Buescu, J., Stewart, I.: From attractor to chaotic saddle: a tale of transverse instability. Nonlinearity 9 (3), 703–737 (1996)
Avila, A., Moreira, C.G.: Statistical properties of unimodal maps: smooth families with negative Schwarzian derivative. Astérisque 286, 81–118 (2003)
Benedicks, M., Carleson, L.: The dynamics of the Hénon map. Ann. Math. 133, 73–169 (1991)
Costantino, R.F., Desharnais, R.A.: Population Dynamics and the Tribolium model : Genetics and Demography. Monographs on theoretical and applied genetics, vol. 13, Springer, Berlin, 1991
de Feo, O., Ferriere, R.: Bifurcation analysis of population invasion: On–off intermittency and basin riddling. Int. J. Bifurcation Chaos 10, 443–452 (2000)
de Melo, W., van Strien, S.: One-Dimensional Dynamics. Springer Verlag, 1993
Diekmann, O., Mylius, S.D., ten Donkelaar, J.R.: Saumon á la Kaitala et Getz, sauce hollandaise. Evol. Ecol. Res. 1, 261–275 (1999)
Doebeli, M.: Invasion of rare mutants does not imply their evolutionary success: a counterexample from metapopulation theory. J. Evolutionary Biol. 11, 389–401 (1998)
Franke, J.E., Yakubu, A.A.: Mutual exclusion versus coexistence of discrete competitive systems. J. Math. Biology 30, 161–168 (1992)
Hassel, M.P.: Density dependence in single species populations. J. Anim. Ecology 44, 283–296 (1974)
Hofbauer, F.: Hausdorff and Conformal Measures for Expanding Piecewise Monotonic Maps of the Interval. Studia Math. 103 (2), 191–206 (1992)
Hofbauer, F.: Hausdorff dimension and pressure for piecewise monotonic maps of the interval. J. London Math. Soc. 47, 142–156 (1993)
Hofbauer, F., Raith, P.: The Hausdorff Dimension of an Ergodic Invariant Measure for a Piecewise Monotonic Map of the Interval. Canad. Math. Bull. 35, 84–98 (1992)
Huisman, J., Weissing, F.J.: Fundamental unpredictability of multispecies competition. Am. Nat. 157, 488–494 (2001)
Kan, I.: Open sets of diffeomorphisms having two attractors each with an everywhere dense basin. Bull. Am. Math. Soc. 31 (1), 68–74 (1994)
Keller, G.: Generalized bounded variation and applications to piecewise monotonictransformations. Z. Wahrsch. Verw. Geb. 69, 461–478 (1985)
May, R.M., Oster, G.F.: Bifurcations and dynamic complexity in simple ecological models. Am. Naturalist 110, 573–599 (1976)
Moran, P.A.P.: Some remarks on animal population dynamics. Biometrics 6, 250–258 (1950)
Mylius, S.D., Diekmann, O.: The Resident Strikes Back: Invader-Induced Switching of Resident Attractor. J. theor. Biol. 211, 297–311 (2001)
Neubert, M.G.: A simple population model with qualitatively uncertain dynamics. J. theor. Biology 189, 399–411 (1997)
Nowicki, T.: A positive Liapunov exponent for the critical value of an S-unimodal map- ping implies uniform hyperbolicity. Ergodic Theory Dynam. Systems 8, 425–435 (1988)
Nowicki, T., Sands, D.: Non-uniform hyperbolicity and universal bounds for S-unimodal maps. Invent. Math. 132, 633–680 (1998)
Park, T.: Experimental studies of interspecies competition. ii. Temperature, humidity, and competition in two species of Tribolium. Physiol. Zool. 27, 177–238 (1954)
Rychlik, M.: Bounded variation and invariant measures. Studia Math. 76, 69–80 (1983)
Steinberger, T.: Local dimension of ergodic measures for two dimensional Lorenz transformations. Ergodic Theory Dynam. Systems 20, 911–923 (2000)
Thunberg, H.: Periodicity versus chaos in one–dimensional dynamics. SIAM Rev. 43, 3–30 (2001)
van Strien, S.: Transitive maps which are not ergodic with respect to Lebesgue measure. Ergodic Theory Dynam. Systems 16, 833–848 (1996)
Walters, P.: An Introduction to Ergodic Theory. Volume 79 of Graduate Texts in Mathematics. Springer, New York, 1982