Intermediate-band solar cells based on dilute alloys and quantum dots

Frontiers of Optoelectronics - Tập 4 Số 1 - Trang 2-11 - 2011
Weiming Wang1, Jun Yang2,1, Xin Zhu3, Jamie Phillips1
1UNIVERSITY OF MICHIGAN
2Philips Lumileds Lighting Company
3Haosolar Co.

Tóm tắt

Từ khóa


Tài liệu tham khảo

Green M A. Third generation photovoltaics: Ultra-high conversion efficiency at low cost. Progress in Photovoltaics: Research and Applications, 2001, 9(2): 123–135

Green M A, Emery K, Hishikawa Y, Warta W. Solar cell efficiency tables (version 36). Progress in Photovoltaics: Research and Applications, 2010, 18(5):346–352

Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 1961, 32(3): 510–519

Ross R T, Nozik A J. Efficiency of hot-carrier solar energy converters. Journal of Applied Physics, 1982, 53(5): 3813–3818

Nozik A J. Quantum dot solar cells. Physica E, Low-Dimensional Systems and Nanostructures, 2002, 14(1–2): 115–120

García I, Rey-Stolle I, Galiana B, Algora C. A 32.6% efficient lattice-matched dual-junction solar cell working at 1000 suns. Applied Physics Letters, 2009, 94(5): 053509

Algora C, Rey-Stolle I, Garcia I, Galiana B, Baudrit M, Espinet P, Barrigón E, Gonzalez J R. III–V multijunction solar cells for ultrahigh concentration photovoltaics. 2009 IEEE 34th Photovoltaic Specialists Conference (PVSC), Philadelphia, PA, 2009, 1571–1575

Geisz J F, Kurtz S, Wanlass M W, Ward J S, Duda A, Friedman D J, Olson J M, McMahon W E, Moriarty T E, Kiehl J T. High-efficiency GaInP/GaAs/InGaAs triple-junction solar cells grown inverted with a metamorphic bottom junction. Applied Physics Letters, 2007, 91(2): 023502

Swanson R M. The promise of concentrators. Progress in Photovoltaics: Research and Applications, 2000, 8(1): 93–111

Hsu L, Walukiewicz W. Modeling of InGaN/Si tandem solar cells. Journal of Applied Physics, 2008, 104(2): 024507

CdTe PV progresses to mass production, http://www.semiconductortoday.com/features/SemiconductorToday%20-%20CdTe%20PV.pdf

Yan B, Yue G, Owens J M, Yang J, Guha S. Over 15% efficient hydrogenated amorphous silicon based triple-junction solar cells incorporating nanocrystalline silicon. 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, Waikoloa, HI, 2006, 1477–1480

Wolf M. Limitations and possibilities for improvement of photovoltaic solar energy converters: part I: considerations for earth’s surface operation. Proceedings of the IRE, 1960, 48(7): 1246–1263

Luque A, Marti A. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Physical Review Letters, 1997, 78(26): 5014–5017

Thomas D G, Hopfield J J, Frosch C J. Isoelectronic traps due to nitrogen in gallium phosphide. Physical Review Letters, 1965, 15(22): 857–860

Cuthbert J D, Thomas D G. Fluorescent decay times of excitons bound to isoelectronic traps in GaP and ZnTe. Physical Review, 1967, 154(3): 763–771

Wu J, Shan W, Walukiewicz W. Band anticrossing in highly mismatched III–V semiconductor alloys. Semiconductor Science and Technology, 2002, 17(8): 860–869

Yu K M, Walukiewicz W, Wu J, Shan W, Beeman J W, Scarpulla M A, Dubon O D, Becla P. Diluted II–VI oxide semiconductors with multiple band gaps. Physical Review Letters, 2003, 91(24): 246403

Burki Y, Czaja W, Capozzi V, Schwendimann P. The temperature dependence of the photoluminescence and lifetime of ZnTe:O. Journal of Physics Condensed Matter, 1993, 5(49): 9235–9252

Wang W, Bowen W, Spanninga S, Lin S, Phillips J. Optical characteristics of ZnTeO thin films synthesized by pulsed laser deposition and molecular beam epitaxy. Journal of Electronic Materials, 2009, 38(1): 119–125

Nabetani Y, Okuno T, Aoki K, Kato T, Matsumoto T, Hirai T. Epitaxial growth and optical investigations of ZnTeO alloys. Physica Status Solidi a-Applications and Materials Science 2006, 203(11): 2653–2657.

Cuthbert J D. Luminescence and free carrier decay times in semiconductors containing isoelectronic traps. Journal of Applied Physics, 1971, 42(2): 739–746

Thomas D G, Hopfield J J. Isoelectronic traps due to nitrogen in gallium phosphide. Physical Review, 1966, 150(2): 680–689

Wang W M, Lin A S, Phillips J D. Intermediate-band photovoltaic solar cell based on ZnTe:O. Applied Physics Letters, 2009, 95(1): 011103

Wang W. Intermediate band solar cells based on ZnTeO. Ph.D. dissertation, University of Michigan, 2010

Marti A, Cuadra L, Luque A. Quasi-drift diffusion model for the quantum dot intermediate band solar cell. IEEE Transactions on Electron Devices, 2002, 49(9): 1632–1639

Luque A, Marti A, Lopez N, Antolin E, Canovas E, Stanley C, Farmer C, Diaz P. Operation of the intermediate band solar cell under nonideal space charge region conditions and half filling of the intermediate band. Journal of Applied Physics, 2006, 99(9): 094503

Lin A S, Wang W M, Phillips J D. Model for intermediate band solar cells incorporating carrier transport and recombination. Journal of Applied Physics, 2009, 105(6): 064512

Wang W M, Lin A S, Phillips J D, Metzger W K. Generation and recombination rates at ZnTe:O intermediate band states. Applied Physics Letters, 2009, 95(26): 261107

Luque A, Marti A, Lopez N, Antolin E, Canovas E, Stanley C, Farmer C, Caballero L J, Cuadra L, Balenzategui J L. Experimental analysis of the quasi-Fermi level split in quantum dot intermediate-band solar cells. Applied Physics Letters, 2005, 87(8): 083505

Lin A S, Phillips J D. Drift-diffusion modeling for impurity photovoltaic devices. IEEE Transactions on Electron Devices, 2009, 56(12): 3168–3174

Tanaka T, Yu K M, Stone P R, Beeman J W, Dubon O D, Reichertz L A, Kao V M, Nishio M, Walukiewicz W. Demonstration of homojunction ZnTe solar cells. Journal of Applied Physics, 2010, 108(2): 024502

Wang W, Phillips J. ZnO/ZnSe/ZnTe heterojunction for ZnTe-based solar cells. Journal of Electronic Materials, 2010 (in press)

Leonard D, Krishnamurthy M, Reaves C M, Denbaars S P, Petroff P M. Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces. Applied Physics Letters, 1993, 63(23): 3203–3205

Berger P R, Chang K, Bhattacharya P, Singh J, Bajaj K K. Role of strain and growth-conditions on the growth front profile of InxGa1 − xAs on GaAs during the pseudomorphic growth regime. Applied Physics Letters, 1988, 53(8): 684–686

Bhattacharya P, Mi Z. Quantum-dot optoelectronic devices. Proceedings of the IEEE, 2007, 95(9): 1723–1740

Yang J, Bhattacharya P, Mi Z. High-performance In0.5Ga0.5As/GaAs quantum dot lasers on silicon with multiple layer quantum dot dislocation filters. IEEE Transactions on Electron Devices, 2007, 54(11): 2849–2855

Yang J, Bhattacharya P, Mi Z, Qin G X, Ma Z Q. Quantum dot lasers and integrated optoelectronics on silicon platform. Chinese Optics Letters, 2008, 6(10): 727–731

Fafard S, Hinzer K, Raymond S, Dion M, McCaffrey J, Feng Y, Charbonneau S. Red-emitting semiconductor quantum dot lasers. Science, 1996, 274(5291): 1350–1353

Mi Z, Yang J, Bhattacharya P. Molecular beam epitaxial growth and characteristics of ultra-low threshold 1.45 mm metamorphic InAs quantum dot lasers on GaAs. Journal of Crystal Growth, 2007, 301–302: 923–926

Yang J, Heo J, Zhu T, Xu J, Topolancik J, Vollmer F, Ilic R, Bhattacharya P. Enhanced photoluminescence from embedded PbSe colloidal quantum dots in silicon-based random photonic crystal microcavities. Applied Physics Letters, 2008, 92(26): 261110

Cui D, Xu J, Zhu T, Paradee G, Ashok S, Gerhold M. Harvest of near infrared light in PbSe nanocrystal-polymer hybrid photovoltaic cells. Applied Physics Letters, 2006, 88(18): 183111

Wei G, Forrest S R. Intermediate-band solar cells employing quantum dots embedded in an energy fence barrier. Nano Letters, 2007, 7(1): 218–222

Laghumavarapu R B, El-Emawy M, Nuntawong N, Moscho A, Lester L F, Huffaker D L. Improved device performance of InAs/GaAs quantum dot solar cells with GaP strain compensation layers. Applied Physics Letters, 2007, 91(24): 243115

Oshima R, Takata A, Okada Y. Strain-compensated InAs/GaNAs quantum dots for use in high-efficiency solar cells. Applied Physics Letters, 2008, 93(8): 083111