Intermediate-band solar cells based on dilute alloys and quantum dots
Tóm tắt
Từ khóa
Tài liệu tham khảo
Green M A. Third generation photovoltaics: Ultra-high conversion efficiency at low cost. Progress in Photovoltaics: Research and Applications, 2001, 9(2): 123–135
Green M A, Emery K, Hishikawa Y, Warta W. Solar cell efficiency tables (version 36). Progress in Photovoltaics: Research and Applications, 2010, 18(5):346–352
Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 1961, 32(3): 510–519
Ross R T, Nozik A J. Efficiency of hot-carrier solar energy converters. Journal of Applied Physics, 1982, 53(5): 3813–3818
Nozik A J. Quantum dot solar cells. Physica E, Low-Dimensional Systems and Nanostructures, 2002, 14(1–2): 115–120
García I, Rey-Stolle I, Galiana B, Algora C. A 32.6% efficient lattice-matched dual-junction solar cell working at 1000 suns. Applied Physics Letters, 2009, 94(5): 053509
Algora C, Rey-Stolle I, Garcia I, Galiana B, Baudrit M, Espinet P, Barrigón E, Gonzalez J R. III–V multijunction solar cells for ultrahigh concentration photovoltaics. 2009 IEEE 34th Photovoltaic Specialists Conference (PVSC), Philadelphia, PA, 2009, 1571–1575
Geisz J F, Kurtz S, Wanlass M W, Ward J S, Duda A, Friedman D J, Olson J M, McMahon W E, Moriarty T E, Kiehl J T. High-efficiency GaInP/GaAs/InGaAs triple-junction solar cells grown inverted with a metamorphic bottom junction. Applied Physics Letters, 2007, 91(2): 023502
Swanson R M. The promise of concentrators. Progress in Photovoltaics: Research and Applications, 2000, 8(1): 93–111
Hsu L, Walukiewicz W. Modeling of InGaN/Si tandem solar cells. Journal of Applied Physics, 2008, 104(2): 024507
CdTe PV progresses to mass production, http://www.semiconductortoday.com/features/SemiconductorToday%20-%20CdTe%20PV.pdf
Yan B, Yue G, Owens J M, Yang J, Guha S. Over 15% efficient hydrogenated amorphous silicon based triple-junction solar cells incorporating nanocrystalline silicon. 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, Waikoloa, HI, 2006, 1477–1480
Wolf M. Limitations and possibilities for improvement of photovoltaic solar energy converters: part I: considerations for earth’s surface operation. Proceedings of the IRE, 1960, 48(7): 1246–1263
Luque A, Marti A. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Physical Review Letters, 1997, 78(26): 5014–5017
Thomas D G, Hopfield J J, Frosch C J. Isoelectronic traps due to nitrogen in gallium phosphide. Physical Review Letters, 1965, 15(22): 857–860
Cuthbert J D, Thomas D G. Fluorescent decay times of excitons bound to isoelectronic traps in GaP and ZnTe. Physical Review, 1967, 154(3): 763–771
Wu J, Shan W, Walukiewicz W. Band anticrossing in highly mismatched III–V semiconductor alloys. Semiconductor Science and Technology, 2002, 17(8): 860–869
Yu K M, Walukiewicz W, Wu J, Shan W, Beeman J W, Scarpulla M A, Dubon O D, Becla P. Diluted II–VI oxide semiconductors with multiple band gaps. Physical Review Letters, 2003, 91(24): 246403
Burki Y, Czaja W, Capozzi V, Schwendimann P. The temperature dependence of the photoluminescence and lifetime of ZnTe:O. Journal of Physics Condensed Matter, 1993, 5(49): 9235–9252
Wang W, Bowen W, Spanninga S, Lin S, Phillips J. Optical characteristics of ZnTeO thin films synthesized by pulsed laser deposition and molecular beam epitaxy. Journal of Electronic Materials, 2009, 38(1): 119–125
Nabetani Y, Okuno T, Aoki K, Kato T, Matsumoto T, Hirai T. Epitaxial growth and optical investigations of ZnTeO alloys. Physica Status Solidi a-Applications and Materials Science 2006, 203(11): 2653–2657.
Cuthbert J D. Luminescence and free carrier decay times in semiconductors containing isoelectronic traps. Journal of Applied Physics, 1971, 42(2): 739–746
Thomas D G, Hopfield J J. Isoelectronic traps due to nitrogen in gallium phosphide. Physical Review, 1966, 150(2): 680–689
Wang W M, Lin A S, Phillips J D. Intermediate-band photovoltaic solar cell based on ZnTe:O. Applied Physics Letters, 2009, 95(1): 011103
Wang W. Intermediate band solar cells based on ZnTeO. Ph.D. dissertation, University of Michigan, 2010
Marti A, Cuadra L, Luque A. Quasi-drift diffusion model for the quantum dot intermediate band solar cell. IEEE Transactions on Electron Devices, 2002, 49(9): 1632–1639
Luque A, Marti A, Lopez N, Antolin E, Canovas E, Stanley C, Farmer C, Diaz P. Operation of the intermediate band solar cell under nonideal space charge region conditions and half filling of the intermediate band. Journal of Applied Physics, 2006, 99(9): 094503
Lin A S, Wang W M, Phillips J D. Model for intermediate band solar cells incorporating carrier transport and recombination. Journal of Applied Physics, 2009, 105(6): 064512
Wang W M, Lin A S, Phillips J D, Metzger W K. Generation and recombination rates at ZnTe:O intermediate band states. Applied Physics Letters, 2009, 95(26): 261107
Luque A, Marti A, Lopez N, Antolin E, Canovas E, Stanley C, Farmer C, Caballero L J, Cuadra L, Balenzategui J L. Experimental analysis of the quasi-Fermi level split in quantum dot intermediate-band solar cells. Applied Physics Letters, 2005, 87(8): 083505
Lin A S, Phillips J D. Drift-diffusion modeling for impurity photovoltaic devices. IEEE Transactions on Electron Devices, 2009, 56(12): 3168–3174
Tanaka T, Yu K M, Stone P R, Beeman J W, Dubon O D, Reichertz L A, Kao V M, Nishio M, Walukiewicz W. Demonstration of homojunction ZnTe solar cells. Journal of Applied Physics, 2010, 108(2): 024502
Wang W, Phillips J. ZnO/ZnSe/ZnTe heterojunction for ZnTe-based solar cells. Journal of Electronic Materials, 2010 (in press)
Leonard D, Krishnamurthy M, Reaves C M, Denbaars S P, Petroff P M. Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces. Applied Physics Letters, 1993, 63(23): 3203–3205
Berger P R, Chang K, Bhattacharya P, Singh J, Bajaj K K. Role of strain and growth-conditions on the growth front profile of InxGa1 − xAs on GaAs during the pseudomorphic growth regime. Applied Physics Letters, 1988, 53(8): 684–686
Bhattacharya P, Mi Z. Quantum-dot optoelectronic devices. Proceedings of the IEEE, 2007, 95(9): 1723–1740
Yang J, Bhattacharya P, Mi Z. High-performance In0.5Ga0.5As/GaAs quantum dot lasers on silicon with multiple layer quantum dot dislocation filters. IEEE Transactions on Electron Devices, 2007, 54(11): 2849–2855
Yang J, Bhattacharya P, Mi Z, Qin G X, Ma Z Q. Quantum dot lasers and integrated optoelectronics on silicon platform. Chinese Optics Letters, 2008, 6(10): 727–731
Fafard S, Hinzer K, Raymond S, Dion M, McCaffrey J, Feng Y, Charbonneau S. Red-emitting semiconductor quantum dot lasers. Science, 1996, 274(5291): 1350–1353
Mi Z, Yang J, Bhattacharya P. Molecular beam epitaxial growth and characteristics of ultra-low threshold 1.45 mm metamorphic InAs quantum dot lasers on GaAs. Journal of Crystal Growth, 2007, 301–302: 923–926
Yang J, Heo J, Zhu T, Xu J, Topolancik J, Vollmer F, Ilic R, Bhattacharya P. Enhanced photoluminescence from embedded PbSe colloidal quantum dots in silicon-based random photonic crystal microcavities. Applied Physics Letters, 2008, 92(26): 261110
Cui D, Xu J, Zhu T, Paradee G, Ashok S, Gerhold M. Harvest of near infrared light in PbSe nanocrystal-polymer hybrid photovoltaic cells. Applied Physics Letters, 2006, 88(18): 183111
Wei G, Forrest S R. Intermediate-band solar cells employing quantum dots embedded in an energy fence barrier. Nano Letters, 2007, 7(1): 218–222
Laghumavarapu R B, El-Emawy M, Nuntawong N, Moscho A, Lester L F, Huffaker D L. Improved device performance of InAs/GaAs quantum dot solar cells with GaP strain compensation layers. Applied Physics Letters, 2007, 91(24): 243115