Ức chế Interleukin-6 trong quản lý viêm màng bồ đào không nhiễm trùng và những ứng dụng vượt xa

Samendra Karkhur1, Murat Hasanreisoğlu1, Erin Vigil1, Muhammad Sohail Halim1, Muhammad Hassan1, Carlos Plaza1, Nam V. Nguyen1, Rubbia Afridi1, Anh Tran1, V. Diana1, Yasir J. Sepah1, Quan Dong Nguyen1
1Byers Eye Institute, Spencer Center for Vision Research, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, 94303, USA

Tóm tắt

Tóm tắtNền tảngViêm màng bồ đào bao gồm nhiều rối loạn viêm có đặc trưng bởi sự viêm mắt. Cơ chế bệnh lý tiềm ẩn bao gồm một sự tương tác phức tạp giữa nhiều con đường viêm. Interleukin-6 là một trung gian quan trọng của quá trình viêm trong viêm màng bồ đào và là trọng tâm nghiên cứu trong việc phát triển các liệu pháp sinh học mới trong việc quản lý viêm màng bồ đào không nhiễm trùng.Thân bàiViệc sử dụng steroid để ức chế toàn diện các con đường viêm thường là bước đầu tiên trong quản lý viêm màng bồ đào không nhiễm trùng cấp tính. Tuy nhiên, liệu pháp kéo dài với steroid liên quan đến những tác dụng phụ toàn thân và mắt, do đó cần phát triển các tác nhân thay thế steroid. IL-6 là một cytokine do nhiều tế bào miễn dịch sản xuất, để đáp ứng với các kiểu phân tử và ảnh hưởng đến nhiều tế bào viêm khác nhau. Đặc biệt, IL-6 tham gia vào sự phân hóa của tế bào CD-4 thành tế bào Th-17, đã được chứng minh đóng vai trò quan trọng trong các bệnh do miễn dịch như viêm màng bồ đào. Hoạt động điều chỉnh miễn dịch phổ quát này khiến IL-6 trở thành một mục tiêu tuyệt vời cho liệu pháp điều chỉnh miễn dịch. Tocilizumab là chất ức chế IL-6 đầu tiên cho thấy tác dụng hiệu quả trên con người. Nó ức chế IL-6 gắn vào cả thụ thể bám màng và tan trong dịch và có thể được sử dụng qua đường tĩnh mạch (IV) và dưới da (SC). Nó đã được FDA phê duyệt để điều trị viêm khớp dạng thấp (RA) và viêm khớp thiếu niên không rõ nguyên nhân (JIA). Sau khi được phê duyệt trong các bệnh toàn thân, hiệu quả của nó đã được chứng minh trong nhiều nghiên cứu viêm màng bồ đào, bao gồm một thử nghiệm lâm sàng giai đoạn 2 (STOP-Uveitis). Tổng thể, tocilizumab đã cho thấy một hồ sơ an toàn tốt với nguy cơ ung thư tương thích với dự đoán ở bệnh nhân viêm khớp dạng thấp. Tuy nhiên, liệu pháp tocilizumab đã được chứng minh làm tăng nguy cơ thủng tiêu hóa và giảm bạch cầu trung tính phụ thuộc liều. Sau thành công của tocilizumab, một số tác nhân khác nhắm vào con đường IL-6 đang trong quá trình nghiên cứu. Những tác nhân này bao gồm sirukumab, siltuximab, olokizumab, clazakizumab và EBI-031 nhắm vào IL-6; Sarilumab và ALX-0061 tác động lên thụ thể IL-6.Kết luậnCác nghiên cứu đã chứng minh rằng các chất ức chế IL-6 có thể hiệu quả trong việc quản lý viêm màng bồ đào không nhiễm trùng (NIU). Ngoài ra, mức độ IL-6 cũng tăng cao trong các bệnh lý mạch máu mắt khác như tắc tĩnh mạch võng mạc và phù hoàng điểm do tiểu đường. Vai trò của việc ức chế IL-6 có thể được mở rộng trong tương lai để bao gồm việc quản lý các bệnh lý mạch máu võng mạc và phù hoàng điểm không do viêm màng bồ đào.

Từ khóa


Tài liệu tham khảo

Tode J et al (2017) Intravitreal injection of anti-Interleukin (IL)-6 antibody attenuates experimental autoimmune uveitis in mice. Cytokine 96:8–15

Horai R, Caspi RR (2019) Microbiome and autoimmune uveitis. Front Immunol 10:232

Mesquida M et al (2017) Targeting interleukin-6 in autoimmune uveitis. Autoimmunity reviews 16(10):1079–1089

Kishimoto T (2010) IL-6: from its discovery to clinical applications. International immunology 22(5):347–352

Ataie-Kachoie P et al (2013) Inhibition of the IL-6 signaling pathway: a strategy to combat chronic inflammatory diseases and cancer. Cytokine & growth factor reviews 24(2):163–173

Lin, P. (2015) Targeting interleukin-6 for noninfectious uveitis. Clinical ophthalmology (Auckland, N.Z.) 9, 1697-1702.

Perez VL et al (2004) Elevated levels of interleukin 6 in the vitreous fluid of patients with pars planitis and posterior uveitis: the Massachusetts eye & ear experience and review of previous studies. Ocular immunology and inflammation 12(3):193–201

Adan A et al (2013) Tocilizumab treatment for refractory uveitis-related cystoid macular edema. Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie 251(11):2627–2632

Mesquida, M. et al. (2018) Twenty-four month follow-up of tocilizumab therapy for refractory uveitis-related macular edema. Retina (Philadelphia, Pa.) 38 (7), 1361-1370.

Mesquida M et al (2014) Long-term effects of tocilizumab therapy for refractory uveitis-related macular edema. Ophthalmology 121(12):2380–2386

Sepah YJ et al (2017) Primary (Month-6) outcomes of the STOP-Uveitis study: evaluating the safety, tolerability, and efficacy of tocilizumab in patients with noninfectious uveitis. American Journal of Ophthalmology 183:71–80

Kang S et al (2015) Therapeutic uses of anti-interleukin-6 receptor antibody. International immunology 27(1):21–29

Calabrese LH, Rose-John S (2014) IL-6 biology: implications for clinical targeting in rheumatic disease. Nature reviews. Rheumatology 10(12):720–727

Hoge, J. et al. (2013) IL-6 controls the innate immune response against Listeria monocytogenes via classical IL-6 signaling. Journal of immunology (Baltimore, Md.: 1950) 190 (2), 703-711.

Matzinger, P. (2002) The danger model: a renewed sense of self. Science (New York, N.Y.) 296 (5566), 301-305.

Rubbert-Roth A et al (2016) Malignancy rates in patients with rheumatoid arthritis treated with tocilizumab. RMD open 2(1):e000213-2015-000213 eCollection 2016

Devaraj S et al (2011) C-reactive protein induces release of both endothelial microparticles and circulating endothelial cells in vitro and in vivo: further evidence of endothelial dysfunction. Clinical chemistry 57(12):1757–1761

Jensen, L.E. and Whitehead, A.S. (1998) Regulation of serum amyloid A protein expression during the acute-phase response. The Biochemical journal 334 ( Pt 3) (Pt 3), 489-503.

Nemeth, E. et al. (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science (New York, N.Y.) 306 (5704), 2090-2093.

Ishibashi T et al (1989) Human interleukin 6 is a direct promoter of maturation of megakaryocytes in vitro. Proceedings of the National Academy of Sciences of the United States of America 86(15):5953–5957

Hashizume M et al (2008) IL-6 trans-signalling directly induces RANKL on fibroblast-like synovial cells and is involved in RANKL induction by TNF-alpha and IL-17. Rheumatology (Oxford, England) 47(11):1635–1640

Nakahara H et al (2003) Anti-interleukin-6 receptor antibody therapy reduces vascular endothelial growth factor production in rheumatoid arthritis. Arthritis and Rheumatism 48(6):1521–1529

Gillespie EF et al (2012) Interleukin-6 production in CD40-engaged fibrocytes in thyroid-associated ophthalmopathy: involvement of Akt and NF-kappaB. Investigative ophthalmology & visual science 53(12):7746–7753

Brenne AT et al (2002) Interleukin-21 is a growth and survival factor for human myeloma cells. Blood 99(10):3756–3762

Heinrich PC et al (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. The Biochemical journal 374(Pt 1):1–20

Taga T, Kishimoto T (1997) Gp130 and the interleukin-6 family of cytokines. Annual Review of Immunology 15:797–819

Rose-John S (2012) IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. International journal of biological sciences 8(9):1237–1247

Seong GJ et al (2009) TGF-beta-induced interleukin-6 participates in transdifferentiation of human Tenon's fibroblasts to myofibroblasts. Molecular vision 15:2123–2128

Sugaya S et al (2011) Regulation of soluble interleukin-6 (IL-6) receptor release from corneal epithelial cells and its role in the ocular surface. Japanese journal of ophthalmology 55(3):277–282

Tanaka T et al (2011) Anti-interleukin-6 receptor antibody, tocilizumab, for the treatment of autoimmune diseases. FEBS letters 585(23):3699–3709

Tanaka T et al (2011) PDLIM2 inhibits T helper 17 cell development and granulomatous inflammation through degradation of STAT3. Science signaling 4(202):ra85

Narazaki M et al (1993) Soluble forms of the interleukin-6 signal-transducing receptor component gp130 in human serum possessing a potential to inhibit signals through membrane-anchored gp130. Blood 82(4):1120–1126

Schmitz J et al (2000) SOCS3 exerts its inhibitory function on interleukin-6 signal transduction through the SHP2 recruitment site of gp130. The Journal of biological chemistry 275(17):12848–12856

Kishimoto T et al (1995) Interleukin-6 family of cytokines and gp130. Blood 86(4):1243–1254

Scheller J et al (2011) The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochimica et biophysica acta 1813(5):878–888

Genovese, M.C. et al. (2015) Sarilumab Plus methotrexate in patients with active rheumatoid arthritis and inadequate response to methotrexate: results of a phase III study. Arthritis & rheumatology (Hoboken, N.J.) 67 (6), 1424-1437.

Smolen JS et al (2014) Sirukumab, a human anti-interleukin-6 monoclonal antibody: a randomised, 2-part (proof-of-concept and dose-finding), phase II study in patients with active rheumatoid arthritis despite methotrexate therapy. Annals of the Rheumatic Diseases 73(9):1616–1625

Jego G et al (2003) Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity 19(2):225–234

Diehl SA et al (2012) IL-6 triggers IL-21 production by human CD4+ T cells to drive STAT3-dependent plasma cell differentiation in B cells. Immunology and cell biology 90(8):802–811

Dienz, O. and Rincon, M. (2009) The effects of IL-6 on CD4 T cell responses. Clinical immunology (Orlando, Fla.) 130 (1), 27-33.

Chihara N et al (2011) Interleukin 6 signaling promotes anti-aquaporin 4 autoantibody production from plasmablasts in neuromyelitis optica. Proceedings of the National Academy of Sciences of the United States of America 108(9):3701–3706

Kawano M et al (1988) Autocrine generation and requirement of BSF-2/IL-6 for human multiple myelomas. Nature 332(6159):83–85

Atreya R et al (2000) Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in crohn disease and experimental colitis in vivo. Nature medicine 6(5):583–588

Korn T et al (2009) IL-17 and Th17 Cells. Annual Review of Immunology 27:485–517

Bettelli E et al (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441(7090):235–238

Kimura A, Kishimoto T (2010) IL-6: regulator of Treg/Th17 balance. European journal of immunology 40(7):1830–1835

Neveu, W.A. et al. (2009) IL-6 is required for airway mucus production induced by inhaled fungal allergens. Journal of immunology (Baltimore, Md.: 1950) 183 (3), 1732-1738.

Diehl S et al (2000) Inhibition of Th1 differentiation by IL-6 is mediated by SOCS1. Immunity 13(6):805–815

Kremer JM et al (2011) Tocilizumab inhibits structural joint damage in rheumatoid arthritis patients with inadequate responses to methotrexate: results from the double-blind treatment phase of a randomized placebo-controlled trial of tocilizumab safety and prevention of structural joint damage at one year. Arthritis and Rheumatism 63(3):609–621

Emery P et al (2008) IL-6 receptor inhibition with tocilizumab improves treatment outcomes in patients with rheumatoid arthritis refractory to anti-tumour necrosis factor biologicals: results from a 24-week multicentre randomised placebo-controlled trial. Annals of the Rheumatic Diseases 67(11):1516–1523

Strand V et al (2018) Patient-reported outcomes from a randomized phase III trial of sarilumab monotherapy versus adalimumab monotherapy in patients with rheumatoid arthritis. Arthritis research & therapy 20(1):129-018-1614-z

Jones G et al (2010) Comparison of tocilizumab monotherapy versus methotrexate monotherapy in patients with moderate to severe rheumatoid arthritis: the AMBITION study. Annals of the Rheumatic Diseases 69(1):88–96

Choy E et al (2018) Subcutaneous tocilizumab in rheumatoid arthritis: findings from the common-framework phase 4 study programme TOZURA conducted in 22 countries. Rheumatology (Oxford, England) 57(3):499–507

Hirano T et al (1987) Human B-cell differentiation factor defined by an anti-peptide antibody and its possible role in autoantibody production. Proceedings of the National Academy of Sciences of the United States of America 84(1):228–231

Hamzaoui K et al (2002) Cytokine profile in Behcet's disease patients. Relationship with disease activity. Scand J Rheumatol 31(4):205–210

Mesquida M et al (2014) Interleukin-6 blockade in ocular inflammatory diseases. Clinical and experimental immunology 176(3):301–309

Waage A et al (1989) The complex pattern of cytokines in serum from patients with meningococcal septic shock. Association between interleukin 6, interleukin 1, and fatal outcome. The Journal of experimental medicine 169(1):333–338

Yoshimura T et al (2009) Involvement of Th17 cells and the effect of anti-IL-6 therapy in autoimmune uveitis. Rheumatology (Oxford, England) 48(4):347–354

Haruta H et al (2011) Blockade of interleukin-6 signaling suppresses not only th17 but also interphotoreceptor retinoid binding protein-specific Th1 by promoting regulatory T cells in experimental autoimmune uveoretinitis. Investigative ophthalmology & visual science 52(6):3264–3271

Zahir-Jouzdani F et al (2017) Interleukin-6 participation in pathology of ocular diseases. Pathophysiology 24(3):123–131

Murray PI et al (1990) Aqueous humor interleukin-6 levels in uveitis. Investigative ophthalmology & visual science 31(5):917–920

de Boer JH et al (1992) Analysis of IL-6 levels in human vitreous fluid obtained from uveitis patients, patients with proliferative intraocular disorders and eye bank eyes. Current eye research 11(Suppl):181–186

Kramer M et al (2007) Serum cytokine levels in active uveitis and remission. Current eye research 32(7-8):669–675

Kishimoto, T. and Ishizaka, K. (1974) Regulation of antibody response in vitro. 8. Multiplicity of soluble factors released from carrier-specific cells. Journal of immunology (Baltimore, Md.: 1950) 112 (5), 1685-1697.

Funatsu H et al (2003) Vitreous levels of interleukin-6 and vascular endothelial growth factor are related to diabetic macular edema. Ophthalmology 110(9):1690–1696

Noma H et al (2009) Vitreous levels of interleukin-6 and vascular endothelial growth factor in macular edema with central retinal vein occlusion. Ophthalmology 116(1):87–93

Suzuki Y et al (2011) Expression profiles of cytokines and chemokines in vitreous fluid in diabetic retinopathy and central retinal vein occlusion. Jpn J Ophthalmol 55(3):256–263

Sadaka A, Giuliari GP (2012) Proliferative vitreoretinopathy: current and emerging treatments. Clin Ophthalmol 6:1325–1333

Leonardi AA et al (2004) Multiple cytokine evaluation in tears of allergic conjunctivitis patients by Multi-Cytokine Bead Assay. Investigative Ophthalmology & Visual Science 45:U308–U308

Higuchi A et al (2011) IL-6 induction in desiccated corneal epithelium in vitro and in vivo. Mol Vis 17:2400–2406

Carnt NA et al (2012) Association of single nucleotide polymorphisms of interleukins-1beta, -6, and -12B with contact lens keratitis susceptibility and severity. Ophthalmology 119(7):1320–1327

Rojas M et al (2010) Role of IL-6 in angiotensin II-induced retinal vascular inflammation. Invest Ophthalmol Vis Sci 51(3):1709–1718

Lewis AC (2013) Interleukin-6 in the pathogenesis of posterior capsule opacification and the potential role for interleukin-6 inhibition in the future of cataract surgery. Med Hypotheses 80(4):466–474

Tobler A et al (1992) Glucocorticoids downregulate gene expression of GM-CSF, NAP-1/IL-8, and IL-6, but not of M-CSF in human fibroblasts. Blood 79(1):45–51

Griffin MO et al (2010) Tetracyclines: a pleitropic family of compounds with promising therapeutic properties. Review of the literature. American journal of physiology. Cell physiology 299(3):C539–C548

Sapadin AN, Fleischmajer R (2006) Tetracyclines: nonantibiotic properties and their clinical implications. Journal of the American Academy of Dermatology 54(2):258–265

Gu Y et al (2011) Chemically modified tetracycline-3 (CMT-3): a novel inhibitor of the serine proteinase, elastase. Pharmacological research 64(6):595–601

Yokota S et al (2012) Efficacy, safety and tolerability of tocilizumab in patients with systemic juvenile idiopathic arthritis. Therapeutic advances in musculoskeletal disease 4(6):387–397

Yao X et al (2014) Targeting interleukin-6 in inflammatory autoimmune diseases and cancers. Pharmacology & therapeutics 141(2):125–139

Bijlsma JWJ et al (2016) Early rheumatoid arthritis treated with tocilizumab, methotrexate, or their combination (U-Act-Early): a multicentre, randomised, double-blind, double-dummy, strategy trial. Lancet (London, England) 388(10042):343–355

Burmester GR et al (2016) Tocilizumab in early progressive rheumatoid arthritis: FUNCTION, a randomised controlled trial. Annals of the Rheumatic Diseases 75(6):1081–1091

Gabay C et al (2013) Tocilizumab monotherapy versus adalimumab monotherapy for treatment of rheumatoid arthritis (ADACTA): a randomised, double-blind, controlled phase 4 trial. Lancet (London, England) 381(9877):1541–1550

Muselier A et al (2011) Efficacy of tocilizumab in two patients with anti-TNF-alpha refractory uveitis. Ocul Immunol Inflamm 19(5):382–383

Hirano T et al (2012) A case of Behcet's disease treated with a humanized anti-interleukin-6 receptor antibody, tocilizumab. Modern rheumatology 22(2):298–302

Tappeiner C et al (2012) Is tocilizumab an effective option for treatment of refractory uveitis associated with juvenile idiopathic arthritis? The Journal of rheumatology 39(6):1294–1295

Papo M et al (2014) Tocilizumab in severe and refractory non-infectious uveitis. Clinical and experimental rheumatology 32(4 Suppl 84):S75–S79

Burmester GR et al (2014) A randomised, double-blind, parallel-group study of the safety and efficacy of subcutaneous tocilizumab versus intravenous tocilizumab in combination with traditional disease-modifying antirheumatic drugs in patients with moderate to severe rheumatoid arthritis (SUMMACTA study). Annals of the Rheumatic Diseases 73(1):69–74

Kivitz A et al (2014) Subcutaneous tocilizumab versus placebo in combination with disease-modifying antirheumatic drugs in patients with rheumatoid arthritis. Arthritis care & research 66(11):1653–1661

Ogata A et al (2014) Phase III study of the efficacy and safety of subcutaneous versus intravenous tocilizumab monotherapy in patients with rheumatoid arthritis. Arthritis care & research 66(3):344–354

Abdallah H et al (2017) Pharmacokinetic and pharmacodynamic analysis of subcutaneous tocilizumab in patients with rheumatoid arthritis from 2 randomized, controlled trials: SUMMACTA and BREVACTA. Journal of clinical pharmacology 57(4):459–468

Strangfeld A et al (2017) Risk for lower intestinal perforations in patients with rheumatoid arthritis treated with tocilizumab in comparison to treatment with other biologic or conventional synthetic DMARDs. Annals of the Rheumatic Diseases 76(3):504–510

Xie, F. et al. (2016) Brief Report: risk of gastrointestinal perforation among rheumatoid Arthritis patients receiving tofacitinib, tocilizumab, or other biologic treatments. Arthritis & rheumatology (Hoboken, N.J.) 68 (11), 2612-2617.

Monemi S et al (2016) Incidence of Gastrointestinal perforations in patients with Rheumatoid arthritis treated with tocilizumab from clinical trial, postmarketing, and real-world data sources. Rheumatology and therapy 3(2):337–352

Wolfe F, Michaud K (2007) Biologic treatment of rheumatoid arthritis and the risk of malignancy: analyses from a large US observational study. Arthritis and Rheumatism 56(9):2886–2895

De Benedetti F et al (2012) Randomized trial of tocilizumab in systemic juvenile idiopathic arthritis. The New England journal of medicine 367(25):2385–2395

Espinoza F et al (2017) Biologic Disease-modifying antirheumatic drug (bDMARD)-induced neutropenia: a registry from a retrospective cohort of patients with rheumatic diseases treated with 3 classes of intravenous bDMARD. The Journal of rheumatology 44(6):844–849

Yokota S et al (2014) Longterm safety and effectiveness of the anti-interleukin 6 receptor monoclonal antibody tocilizumab in patients with systemic juvenile idiopathic arthritis in Japan. The Journal of rheumatology 41(4):759–767

Yokota S et al (2016) Tocilizumab in systemic juvenile idiopathic arthritis in a real-world clinical setting: results from 1 year of postmarketing surveillance follow-up of 417 patients in Japan. Annals of the Rheumatic Diseases 75(9):1654–1660

Heissigerova J et al (2019) Efficacy and Safety of sarilumab for the treatment of posterior segment noninfectious uveitis (SARIL-NIU): the phase 2 SATURN study. Ophthalmology 126(3):428–437

Takeuchi T et al (2017) Sirukumab for rheumatoid arthritis: the phase III SIRROUND-D study. Annals of the Rheumatic Diseases 76(12):2001–2008

Kurzrock R et al (2013) A phase I, open-label study of siltuximab, an anti-IL-6 monoclonal antibody, in patients with B-cell non-Hodgkin lymphoma, multiple myeloma, or Castleman disease. Clinical cancer research : an official journal of the American Association for Cancer Research 19(13):3659–3670

Genovese MC et al (2014) Efficacy and safety of olokizumab in patients with rheumatoid arthritis with an inadequate response to TNF inhibitor therapy: outcomes of a randomised Phase IIb study. Annals of the Rheumatic Diseases 73(9):1607–1615

Weinblatt, M.E. et al. (2015) The efficacy and safety of subcutaneous clazakizumab in patients with moderate-to-severe rheumatoid arthritis and an inadequate response to methotrexate: results from a multinational, phase IIb, randomized, double-blind, placebo/active-controlled, dose-ranging study. Arthritis & rheumatology (Hoboken, N.J.) 67 (10), 2591-2600.