Ức chế Interleukin-6 trong quản lý viêm màng bồ đào không nhiễm trùng và những ứng dụng vượt xa
Tóm tắt
Từ khóa
Tài liệu tham khảo
Tode J et al (2017) Intravitreal injection of anti-Interleukin (IL)-6 antibody attenuates experimental autoimmune uveitis in mice. Cytokine 96:8–15
Mesquida M et al (2017) Targeting interleukin-6 in autoimmune uveitis. Autoimmunity reviews 16(10):1079–1089
Kishimoto T (2010) IL-6: from its discovery to clinical applications. International immunology 22(5):347–352
Ataie-Kachoie P et al (2013) Inhibition of the IL-6 signaling pathway: a strategy to combat chronic inflammatory diseases and cancer. Cytokine & growth factor reviews 24(2):163–173
Lin, P. (2015) Targeting interleukin-6 for noninfectious uveitis. Clinical ophthalmology (Auckland, N.Z.) 9, 1697-1702.
Perez VL et al (2004) Elevated levels of interleukin 6 in the vitreous fluid of patients with pars planitis and posterior uveitis: the Massachusetts eye & ear experience and review of previous studies. Ocular immunology and inflammation 12(3):193–201
Adan A et al (2013) Tocilizumab treatment for refractory uveitis-related cystoid macular edema. Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie 251(11):2627–2632
Mesquida, M. et al. (2018) Twenty-four month follow-up of tocilizumab therapy for refractory uveitis-related macular edema. Retina (Philadelphia, Pa.) 38 (7), 1361-1370.
Mesquida M et al (2014) Long-term effects of tocilizumab therapy for refractory uveitis-related macular edema. Ophthalmology 121(12):2380–2386
Sepah YJ et al (2017) Primary (Month-6) outcomes of the STOP-Uveitis study: evaluating the safety, tolerability, and efficacy of tocilizumab in patients with noninfectious uveitis. American Journal of Ophthalmology 183:71–80
Kang S et al (2015) Therapeutic uses of anti-interleukin-6 receptor antibody. International immunology 27(1):21–29
Calabrese LH, Rose-John S (2014) IL-6 biology: implications for clinical targeting in rheumatic disease. Nature reviews. Rheumatology 10(12):720–727
Hoge, J. et al. (2013) IL-6 controls the innate immune response against Listeria monocytogenes via classical IL-6 signaling. Journal of immunology (Baltimore, Md.: 1950) 190 (2), 703-711.
Matzinger, P. (2002) The danger model: a renewed sense of self. Science (New York, N.Y.) 296 (5566), 301-305.
Rubbert-Roth A et al (2016) Malignancy rates in patients with rheumatoid arthritis treated with tocilizumab. RMD open 2(1):e000213-2015-000213 eCollection 2016
Devaraj S et al (2011) C-reactive protein induces release of both endothelial microparticles and circulating endothelial cells in vitro and in vivo: further evidence of endothelial dysfunction. Clinical chemistry 57(12):1757–1761
Jensen, L.E. and Whitehead, A.S. (1998) Regulation of serum amyloid A protein expression during the acute-phase response. The Biochemical journal 334 ( Pt 3) (Pt 3), 489-503.
Nemeth, E. et al. (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science (New York, N.Y.) 306 (5704), 2090-2093.
Ishibashi T et al (1989) Human interleukin 6 is a direct promoter of maturation of megakaryocytes in vitro. Proceedings of the National Academy of Sciences of the United States of America 86(15):5953–5957
Hashizume M et al (2008) IL-6 trans-signalling directly induces RANKL on fibroblast-like synovial cells and is involved in RANKL induction by TNF-alpha and IL-17. Rheumatology (Oxford, England) 47(11):1635–1640
Nakahara H et al (2003) Anti-interleukin-6 receptor antibody therapy reduces vascular endothelial growth factor production in rheumatoid arthritis. Arthritis and Rheumatism 48(6):1521–1529
Gillespie EF et al (2012) Interleukin-6 production in CD40-engaged fibrocytes in thyroid-associated ophthalmopathy: involvement of Akt and NF-kappaB. Investigative ophthalmology & visual science 53(12):7746–7753
Brenne AT et al (2002) Interleukin-21 is a growth and survival factor for human myeloma cells. Blood 99(10):3756–3762
Heinrich PC et al (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. The Biochemical journal 374(Pt 1):1–20
Taga T, Kishimoto T (1997) Gp130 and the interleukin-6 family of cytokines. Annual Review of Immunology 15:797–819
Rose-John S (2012) IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. International journal of biological sciences 8(9):1237–1247
Seong GJ et al (2009) TGF-beta-induced interleukin-6 participates in transdifferentiation of human Tenon's fibroblasts to myofibroblasts. Molecular vision 15:2123–2128
Sugaya S et al (2011) Regulation of soluble interleukin-6 (IL-6) receptor release from corneal epithelial cells and its role in the ocular surface. Japanese journal of ophthalmology 55(3):277–282
Tanaka T et al (2011) Anti-interleukin-6 receptor antibody, tocilizumab, for the treatment of autoimmune diseases. FEBS letters 585(23):3699–3709
Tanaka T et al (2011) PDLIM2 inhibits T helper 17 cell development and granulomatous inflammation through degradation of STAT3. Science signaling 4(202):ra85
Narazaki M et al (1993) Soluble forms of the interleukin-6 signal-transducing receptor component gp130 in human serum possessing a potential to inhibit signals through membrane-anchored gp130. Blood 82(4):1120–1126
Schmitz J et al (2000) SOCS3 exerts its inhibitory function on interleukin-6 signal transduction through the SHP2 recruitment site of gp130. The Journal of biological chemistry 275(17):12848–12856
Scheller J et al (2011) The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochimica et biophysica acta 1813(5):878–888
Genovese, M.C. et al. (2015) Sarilumab Plus methotrexate in patients with active rheumatoid arthritis and inadequate response to methotrexate: results of a phase III study. Arthritis & rheumatology (Hoboken, N.J.) 67 (6), 1424-1437.
Smolen JS et al (2014) Sirukumab, a human anti-interleukin-6 monoclonal antibody: a randomised, 2-part (proof-of-concept and dose-finding), phase II study in patients with active rheumatoid arthritis despite methotrexate therapy. Annals of the Rheumatic Diseases 73(9):1616–1625
Jego G et al (2003) Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity 19(2):225–234
Diehl SA et al (2012) IL-6 triggers IL-21 production by human CD4+ T cells to drive STAT3-dependent plasma cell differentiation in B cells. Immunology and cell biology 90(8):802–811
Dienz, O. and Rincon, M. (2009) The effects of IL-6 on CD4 T cell responses. Clinical immunology (Orlando, Fla.) 130 (1), 27-33.
Chihara N et al (2011) Interleukin 6 signaling promotes anti-aquaporin 4 autoantibody production from plasmablasts in neuromyelitis optica. Proceedings of the National Academy of Sciences of the United States of America 108(9):3701–3706
Kawano M et al (1988) Autocrine generation and requirement of BSF-2/IL-6 for human multiple myelomas. Nature 332(6159):83–85
Atreya R et al (2000) Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in crohn disease and experimental colitis in vivo. Nature medicine 6(5):583–588
Bettelli E et al (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441(7090):235–238
Kimura A, Kishimoto T (2010) IL-6: regulator of Treg/Th17 balance. European journal of immunology 40(7):1830–1835
Neveu, W.A. et al. (2009) IL-6 is required for airway mucus production induced by inhaled fungal allergens. Journal of immunology (Baltimore, Md.: 1950) 183 (3), 1732-1738.
Diehl S et al (2000) Inhibition of Th1 differentiation by IL-6 is mediated by SOCS1. Immunity 13(6):805–815
Kremer JM et al (2011) Tocilizumab inhibits structural joint damage in rheumatoid arthritis patients with inadequate responses to methotrexate: results from the double-blind treatment phase of a randomized placebo-controlled trial of tocilizumab safety and prevention of structural joint damage at one year. Arthritis and Rheumatism 63(3):609–621
Emery P et al (2008) IL-6 receptor inhibition with tocilizumab improves treatment outcomes in patients with rheumatoid arthritis refractory to anti-tumour necrosis factor biologicals: results from a 24-week multicentre randomised placebo-controlled trial. Annals of the Rheumatic Diseases 67(11):1516–1523
Strand V et al (2018) Patient-reported outcomes from a randomized phase III trial of sarilumab monotherapy versus adalimumab monotherapy in patients with rheumatoid arthritis. Arthritis research & therapy 20(1):129-018-1614-z
Jones G et al (2010) Comparison of tocilizumab monotherapy versus methotrexate monotherapy in patients with moderate to severe rheumatoid arthritis: the AMBITION study. Annals of the Rheumatic Diseases 69(1):88–96
Choy E et al (2018) Subcutaneous tocilizumab in rheumatoid arthritis: findings from the common-framework phase 4 study programme TOZURA conducted in 22 countries. Rheumatology (Oxford, England) 57(3):499–507
Hirano T et al (1987) Human B-cell differentiation factor defined by an anti-peptide antibody and its possible role in autoantibody production. Proceedings of the National Academy of Sciences of the United States of America 84(1):228–231
Hamzaoui K et al (2002) Cytokine profile in Behcet's disease patients. Relationship with disease activity. Scand J Rheumatol 31(4):205–210
Mesquida M et al (2014) Interleukin-6 blockade in ocular inflammatory diseases. Clinical and experimental immunology 176(3):301–309
Waage A et al (1989) The complex pattern of cytokines in serum from patients with meningococcal septic shock. Association between interleukin 6, interleukin 1, and fatal outcome. The Journal of experimental medicine 169(1):333–338
Yoshimura T et al (2009) Involvement of Th17 cells and the effect of anti-IL-6 therapy in autoimmune uveitis. Rheumatology (Oxford, England) 48(4):347–354
Haruta H et al (2011) Blockade of interleukin-6 signaling suppresses not only th17 but also interphotoreceptor retinoid binding protein-specific Th1 by promoting regulatory T cells in experimental autoimmune uveoretinitis. Investigative ophthalmology & visual science 52(6):3264–3271
Zahir-Jouzdani F et al (2017) Interleukin-6 participation in pathology of ocular diseases. Pathophysiology 24(3):123–131
Murray PI et al (1990) Aqueous humor interleukin-6 levels in uveitis. Investigative ophthalmology & visual science 31(5):917–920
de Boer JH et al (1992) Analysis of IL-6 levels in human vitreous fluid obtained from uveitis patients, patients with proliferative intraocular disorders and eye bank eyes. Current eye research 11(Suppl):181–186
Kramer M et al (2007) Serum cytokine levels in active uveitis and remission. Current eye research 32(7-8):669–675
Kishimoto, T. and Ishizaka, K. (1974) Regulation of antibody response in vitro. 8. Multiplicity of soluble factors released from carrier-specific cells. Journal of immunology (Baltimore, Md.: 1950) 112 (5), 1685-1697.
Funatsu H et al (2003) Vitreous levels of interleukin-6 and vascular endothelial growth factor are related to diabetic macular edema. Ophthalmology 110(9):1690–1696
Noma H et al (2009) Vitreous levels of interleukin-6 and vascular endothelial growth factor in macular edema with central retinal vein occlusion. Ophthalmology 116(1):87–93
Suzuki Y et al (2011) Expression profiles of cytokines and chemokines in vitreous fluid in diabetic retinopathy and central retinal vein occlusion. Jpn J Ophthalmol 55(3):256–263
Sadaka A, Giuliari GP (2012) Proliferative vitreoretinopathy: current and emerging treatments. Clin Ophthalmol 6:1325–1333
Leonardi AA et al (2004) Multiple cytokine evaluation in tears of allergic conjunctivitis patients by Multi-Cytokine Bead Assay. Investigative Ophthalmology & Visual Science 45:U308–U308
Higuchi A et al (2011) IL-6 induction in desiccated corneal epithelium in vitro and in vivo. Mol Vis 17:2400–2406
Carnt NA et al (2012) Association of single nucleotide polymorphisms of interleukins-1beta, -6, and -12B with contact lens keratitis susceptibility and severity. Ophthalmology 119(7):1320–1327
Rojas M et al (2010) Role of IL-6 in angiotensin II-induced retinal vascular inflammation. Invest Ophthalmol Vis Sci 51(3):1709–1718
Lewis AC (2013) Interleukin-6 in the pathogenesis of posterior capsule opacification and the potential role for interleukin-6 inhibition in the future of cataract surgery. Med Hypotheses 80(4):466–474
Tobler A et al (1992) Glucocorticoids downregulate gene expression of GM-CSF, NAP-1/IL-8, and IL-6, but not of M-CSF in human fibroblasts. Blood 79(1):45–51
Griffin MO et al (2010) Tetracyclines: a pleitropic family of compounds with promising therapeutic properties. Review of the literature. American journal of physiology. Cell physiology 299(3):C539–C548
Sapadin AN, Fleischmajer R (2006) Tetracyclines: nonantibiotic properties and their clinical implications. Journal of the American Academy of Dermatology 54(2):258–265
Gu Y et al (2011) Chemically modified tetracycline-3 (CMT-3): a novel inhibitor of the serine proteinase, elastase. Pharmacological research 64(6):595–601
Yokota S et al (2012) Efficacy, safety and tolerability of tocilizumab in patients with systemic juvenile idiopathic arthritis. Therapeutic advances in musculoskeletal disease 4(6):387–397
Yao X et al (2014) Targeting interleukin-6 in inflammatory autoimmune diseases and cancers. Pharmacology & therapeutics 141(2):125–139
Bijlsma JWJ et al (2016) Early rheumatoid arthritis treated with tocilizumab, methotrexate, or their combination (U-Act-Early): a multicentre, randomised, double-blind, double-dummy, strategy trial. Lancet (London, England) 388(10042):343–355
Burmester GR et al (2016) Tocilizumab in early progressive rheumatoid arthritis: FUNCTION, a randomised controlled trial. Annals of the Rheumatic Diseases 75(6):1081–1091
Gabay C et al (2013) Tocilizumab monotherapy versus adalimumab monotherapy for treatment of rheumatoid arthritis (ADACTA): a randomised, double-blind, controlled phase 4 trial. Lancet (London, England) 381(9877):1541–1550
Muselier A et al (2011) Efficacy of tocilizumab in two patients with anti-TNF-alpha refractory uveitis. Ocul Immunol Inflamm 19(5):382–383
Hirano T et al (2012) A case of Behcet's disease treated with a humanized anti-interleukin-6 receptor antibody, tocilizumab. Modern rheumatology 22(2):298–302
Tappeiner C et al (2012) Is tocilizumab an effective option for treatment of refractory uveitis associated with juvenile idiopathic arthritis? The Journal of rheumatology 39(6):1294–1295
Papo M et al (2014) Tocilizumab in severe and refractory non-infectious uveitis. Clinical and experimental rheumatology 32(4 Suppl 84):S75–S79
Burmester GR et al (2014) A randomised, double-blind, parallel-group study of the safety and efficacy of subcutaneous tocilizumab versus intravenous tocilizumab in combination with traditional disease-modifying antirheumatic drugs in patients with moderate to severe rheumatoid arthritis (SUMMACTA study). Annals of the Rheumatic Diseases 73(1):69–74
Kivitz A et al (2014) Subcutaneous tocilizumab versus placebo in combination with disease-modifying antirheumatic drugs in patients with rheumatoid arthritis. Arthritis care & research 66(11):1653–1661
Ogata A et al (2014) Phase III study of the efficacy and safety of subcutaneous versus intravenous tocilizumab monotherapy in patients with rheumatoid arthritis. Arthritis care & research 66(3):344–354
Abdallah H et al (2017) Pharmacokinetic and pharmacodynamic analysis of subcutaneous tocilizumab in patients with rheumatoid arthritis from 2 randomized, controlled trials: SUMMACTA and BREVACTA. Journal of clinical pharmacology 57(4):459–468
Strangfeld A et al (2017) Risk for lower intestinal perforations in patients with rheumatoid arthritis treated with tocilizumab in comparison to treatment with other biologic or conventional synthetic DMARDs. Annals of the Rheumatic Diseases 76(3):504–510
Xie, F. et al. (2016) Brief Report: risk of gastrointestinal perforation among rheumatoid Arthritis patients receiving tofacitinib, tocilizumab, or other biologic treatments. Arthritis & rheumatology (Hoboken, N.J.) 68 (11), 2612-2617.
Monemi S et al (2016) Incidence of Gastrointestinal perforations in patients with Rheumatoid arthritis treated with tocilizumab from clinical trial, postmarketing, and real-world data sources. Rheumatology and therapy 3(2):337–352
Wolfe F, Michaud K (2007) Biologic treatment of rheumatoid arthritis and the risk of malignancy: analyses from a large US observational study. Arthritis and Rheumatism 56(9):2886–2895
De Benedetti F et al (2012) Randomized trial of tocilizumab in systemic juvenile idiopathic arthritis. The New England journal of medicine 367(25):2385–2395
Espinoza F et al (2017) Biologic Disease-modifying antirheumatic drug (bDMARD)-induced neutropenia: a registry from a retrospective cohort of patients with rheumatic diseases treated with 3 classes of intravenous bDMARD. The Journal of rheumatology 44(6):844–849
Yokota S et al (2014) Longterm safety and effectiveness of the anti-interleukin 6 receptor monoclonal antibody tocilizumab in patients with systemic juvenile idiopathic arthritis in Japan. The Journal of rheumatology 41(4):759–767
Yokota S et al (2016) Tocilizumab in systemic juvenile idiopathic arthritis in a real-world clinical setting: results from 1 year of postmarketing surveillance follow-up of 417 patients in Japan. Annals of the Rheumatic Diseases 75(9):1654–1660
Heissigerova J et al (2019) Efficacy and Safety of sarilumab for the treatment of posterior segment noninfectious uveitis (SARIL-NIU): the phase 2 SATURN study. Ophthalmology 126(3):428–437
Takeuchi T et al (2017) Sirukumab for rheumatoid arthritis: the phase III SIRROUND-D study. Annals of the Rheumatic Diseases 76(12):2001–2008
Kurzrock R et al (2013) A phase I, open-label study of siltuximab, an anti-IL-6 monoclonal antibody, in patients with B-cell non-Hodgkin lymphoma, multiple myeloma, or Castleman disease. Clinical cancer research : an official journal of the American Association for Cancer Research 19(13):3659–3670
Genovese MC et al (2014) Efficacy and safety of olokizumab in patients with rheumatoid arthritis with an inadequate response to TNF inhibitor therapy: outcomes of a randomised Phase IIb study. Annals of the Rheumatic Diseases 73(9):1607–1615
Weinblatt, M.E. et al. (2015) The efficacy and safety of subcutaneous clazakizumab in patients with moderate-to-severe rheumatoid arthritis and an inadequate response to methotrexate: results from a multinational, phase IIb, randomized, double-blind, placebo/active-controlled, dose-ranging study. Arthritis & rheumatology (Hoboken, N.J.) 67 (10), 2591-2600.