Interleukin-22 signaling attenuates necrotizing enterocolitis by promoting epithelial cell regeneration

Cell Reports Medicine - Tập 2 - Trang 100320 - 2021
Belgacem Mihi1, Qingqing Gong1, Lila S. Nolan1, Sarah E. Gale1, Martin Goree1, Elise Hu1, Wyatt E. Lanik1, Jamie M. Rimer1, Victoria Liu2, Olivia B. Parks3, Angela N. Lewis1, Pranjal Agrawal2, Marie L. Laury4, Pawan Kumar5, Elizabeth Huang1, Shay S. Bidani1, Cliff J. Luke1, Jay K. Kolls6, Misty Good1
1Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
2Washington University in St. Louis, St. Louis, MO 63130, USA
3University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
4Genome Technology Access Center, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
5Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
6Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA, USA

Tài liệu tham khảo

Widdowson, 1968, Effects of Prematurity and Dysmaturity in Animals, 127 2007, Causes, Consequences, and Prevention Neu, 2011, Necrotizing enterocolitis, N. Engl. J. Med., 364, 255, 10.1056/NEJMra1005408 Patel, 2015, Intestinal microbiota and its relationship with necrotizing enterocolitis, Pediatr. Res., 78, 232, 10.1038/pr.2015.97 Rusconi, 2017, The microbiome and biomarkers for necrotizing enterocolitis: Are we any closer to prediction?, J. Pediatr., 189, 40, 10.1016/j.jpeds.2017.05.075 Mihi, 2019, Impact of Toll-like receptor 4 signaling in necrotizing enterocolitis: The state of the science, Clin. Perinatol., 46, 145, 10.1016/j.clp.2018.09.007 Warner, 2016, Gut bacteria dysbiosis and necrotising enterocolitis in very low birthweight infants: a prospective case-control study, Lancet, 387, 1928, 10.1016/S0140-6736(16)00081-7 Pammi, 2017, Intestinal dysbiosis in preterm infants preceding necrotizing enterocolitis: a systematic review and meta-analysis, Microbiome, 5, 31, 10.1186/s40168-017-0248-8 Olm, 2019, Necrotizing enterocolitis is preceded by increased gut bacterial replication, Klebsiella, and fimbriae-encoding bacteria, Sci. Adv., 5, eaax5727, 10.1126/sciadv.aax5727 Parks, 2016, Interleukin-22 Signaling in the Regulation of Intestinal Health and Disease, Front. Cell Dev. Biol., 3, 85, 10.3389/fcell.2015.00085 Aujla, 2008, IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia, Nat. Med., 14, 275, 10.1038/nm1710 Zheng, 2008, Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens, Nat. Med., 14, 282, 10.1038/nm1720 Vaishnava, 2011, The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine, Science, 334, 255, 10.1126/science.1209791 Sonnenberg, 2012, Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria, Science, 336, 1321, 10.1126/science.1222551 Goto, 2014, Innate lymphoid cells regulate intestinal epithelial cell glycosylation, Science, 345, 1254009, 10.1126/science.1254009 Pickard, 2014, Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness, Nature, 514, 638, 10.1038/nature13823 Pham, 2014, Epithelial IL-22RA1-mediated fucosylation promotes intestinal colonization resistance to an opportunistic pathogen, Cell Host Microbe, 16, 504, 10.1016/j.chom.2014.08.017 Hanash, 2012, Interleukin-22 protects intestinal stem cells from immune-mediated tissue damage and regulates sensitivity to graft versus host disease, Immunity, 37, 339, 10.1016/j.immuni.2012.05.028 Aparicio-Domingo, 2015, Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage, J. Exp. Med., 212, 1783, 10.1084/jem.20150318 Lindemans, 2015, Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration, Nature, 528, 560, 10.1038/nature16460 Zwarycz, 2018, IL22 Inhibits Epithelial Stem Cell Expansion in an Ileal Organoid Model, Cell. Mol. Gastroenterol. Hepatol., 7, 1, 10.1016/j.jcmgh.2018.06.008 Zha, 2019, Interleukin 22 Expands Transit-Amplifying Cells While Depleting Lgr5+ Stem Cells via Inhibition of Wnt and Notch Signaling, Cell. Mol. Gastroenterol. Hepatol., 7, 255, 10.1016/j.jcmgh.2018.09.006 Gray, 2017, Intestinal commensal bacteria mediate lung mucosal immunity and promote resistance of newborn mice to infection, Sci. Transl. Med., 9, eaaf9412, 10.1126/scitranslmed.aaf9412 Chen, 2019, Interleukin 22 disrupts pancreatic function in newborn mice expressing IL-23, Nat. Commun., 10, 4517, 10.1038/s41467-019-12540-8 Shindo, 2019, Necroptosis of Intestinal Epithelial Cells Induces Type 3 Innate Lymphoid Cell-Dependent Lethal Ileitis, iScience, 15, 536, 10.1016/j.isci.2019.05.011 Good, 2016, The human milk oligosaccharide 2′-fucosyllactose attenuates the severity of experimental necrotising enterocolitis by enhancing mesenteric perfusion in the neonatal intestine, Br. J. Nutr., 116, 1175, 10.1017/S0007114516002944 Ares, 2018, The science and necessity of using animal models in the study of necrotizing enterocolitis, Semin. Pediatr. Surg., 27, 29, 10.1053/j.sempedsurg.2017.11.006 Good, 2020, Global hypermethylation of intestinal epithelial cells is a hallmark feature of neonatal surgical necrotizing enterocolitis, Clin. Epigenetics, 12, 190, 10.1186/s13148-020-00983-6 Satoh-Takayama, 2008, Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense, Immunity, 29, 958, 10.1016/j.immuni.2008.11.001 Sanos, 2009, RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells, Nat. Immunol., 10, 83, 10.1038/ni.1684 Henderickx, 2019, The Preterm Gut Microbiota: An Inconspicuous Challenge in Nutritional Neonatal Care, Front. Cell. Infect. Microbiol., 9, 85, 10.3389/fcimb.2019.00085 Savage, 2017, The development of steady-state activation hubs between adult LTi ILC3s and primed macrophages in small intestine, J. Immunol., 199, 1912, 10.4049/jimmunol.1700155 Gribar, 2009, Reciprocal expression and signaling of TLR4 and TLR9 in the pathogenesis and treatment of necrotizing enterocolitis, J. Immunol., 182, 636, 10.4049/jimmunol.182.1.636 Good, 2014, Lactobacillus rhamnosus HN001 decreases the severity of necrotizing enterocolitis in neonatal mice and preterm piglets: evidence in mice for a role of TLR9, Am. J. Physiol. Gastrointest. Liver Physiol., 306, G1021, 10.1152/ajpgi.00452.2013 Torow, 2015, Active suppression of intestinal CD4(+)TCRαβ(+) T-lymphocyte maturation during the postnatal period, Nat. Commun., 6, 7725, 10.1038/ncomms8725 Elahi, 2013, Immunosuppressive CD71+ erythroid cells compromise neonatal host defence against infection, Nature, 504, 158, 10.1038/nature12675 He, 2018, Transitory presence of myeloid-derived suppressor cells in neonates is critical for control of inflammation, Nat. Med., 24, 224, 10.1038/nm.4467 Zenewicz, 2013, IL-22 deficiency alters colonic microbiota to be transmissible and colitogenic, J. Immunol., 190, 5306, 10.4049/jimmunol.1300016 Lo, 2019, IL-22 Preserves Gut Epithelial Integrity and Promotes Disease Remission during Chronic Salmonella Infection, J. Immunol., 202, 956, 10.4049/jimmunol.1801308 Zheng, 2016, Therapeutic Role of Interleukin 22 in Experimental Intra-abdominal Klebsiella pneumoniae Infection in Mice, Infect. Immun., 84, 782, 10.1128/IAI.01268-15 Trevejo-Nunez, 2019, Interleukin-22 (IL-22) Binding Protein Constrains IL-22 Activity, Host Defense, and Oxidative Phosphorylation Genes during Pneumococcal Pneumonia, Infect. Immun., 87, 10.1128/IAI.00550-19 Sato, 2013, Primary mouse small intestinal epithelial cell cultures, Methods Mol. Biol., 945, 319, 10.1007/978-1-62703-125-7_19 VanDussen, 2019, L-WRN conditioned medium for gastrointestinal epithelial stem cell culture shows replicable batch-to-batch activity levels across multiple research teams, Stem Cell Res. (Amst.), 37, 101430, 10.1016/j.scr.2019.101430 Kumar, 2016, Intestinal Interleukin-17 Receptor Signaling Mediates Reciprocal Control of the Gut Microbiota and Autoimmune Inflammation, Immunity, 44, 659, 10.1016/j.immuni.2016.02.007 Schriefer, 2018, A multi-amplicon 16S rRNA sequencing and analysis method for improved taxonomic profiling of bacterial communities, J. Microbiol. Methods, 154, 6, 10.1016/j.mimet.2018.09.019