Interlayer and Si content of phengite in HP–LT carpholite‐bearing metapelites

Journal of Metamorphic Geology - Tập 19 Số 5 - Trang 479-495 - 2001
Philippe Agard1, Olivier Vidal1, Bruno Goffé1
1UMR 8532, Laboratoire de Géologie, Ecole Normale Supérieure, 24, rue Lhomond, F-75231 PARIS Cedex 05, France. ([email protected])

Tóm tắt

AbstractPhengite occurring along with carpholite±lawsonite and/or chloritoid in HP–LT domains shows not only variable Si–(Mg+Fe) contents, but also variable interlayer contents (IC). To determine whether these chemical variations are coherently related to variation in P–T conditions on a regional scale, c. 100 rock samples were sampled in metapelites metamorphosed at conditions varying from 350 °C, 8 to 12 kbar to 450–500 °C, 18 to 20 kbar (Schistes Lustrés complex, franco‐italian Western Alps). Based on microstructural and habit criteria, four types of phengite were differentiated that are related either to the rock mineralogy (carpholite vs chloritoid bearing samples) or correspond to various generations of phengite occurring in the same rock sample or thin section. Microprobe analyses reveal that each type of phengite is characterized by a specific composition and that phengite associated with carpholite has a lower interlayer content than phengite associated with chloritoid. The successive generations of retrograde phengite overgrowing carpholite point to a large decrease of interlayer content (c. 0.9–0.7 pfu) and (Fe+Mg) content (c. 0.25–0 pfu) with decreasing P–T conditions. This change is best accounted for by a gradual increase of the pyrophyllite component. In contrast, phengite from higher‐temperature, chloritoid‐bearing rock samples shows an almost constant interlayer content (c. 0.9–0.95 pfu) but a larger decrease of (Fe+Mg) content (c. 0.6–0.1 pfu). Hence, (1) the composition of the different phengite generations occurring (metastably) in the same rock sample may be used to retrieve points in P–T loops and (2) the pyrophyllitic substitution in phengite is large at low‐temperature conditions and cannot be ignored. Thermobarometric estimates based on the Si‐content alone will therefore result in pressure over‐estimates. We propose a tentative location of the phengite Si and IC isopleths in P–T space which could allow a direct determination of the P–T conditions in carpholite‐bearing rocks. Especially in some carpholite‐bearing rocks, new thermodynamic models accounting for tschermak and pyrophyllitic substitution are also required prior to making reliable thermobarometric estimates in HP‐LT metapelites.

Từ khóa


Tài liệu tham khảo

10.1180/minmag.1998.62A.1.09

10.1007/s004100000190

Agard P. Jolivet L. Goffé B. 2001.Tectonometamorphic evolution of the Schistes Lustres complex: implications for the exhumation of HP and UHP rocks from the Western Alps.Bulletin de la Société Géologique de France 172 in press

Agard P. Monié P. Goffé B. Jolivet L. 2000b.Datations des Schistes Lustrés par ablation laSeries40Ar/39Ar: implications pour les Alpes occidentales.18èmeRéunion Annuelle des Sciences de la Terre Paris 67.

10.1346/CCMN.1984.0320316

10.1016/0024-4937(89)90005-4

10.1093/petrology/29.2.445

Beyssac O., 1999, Prospects for Coal Science in the 21st Century, 29

Biino G. G., 1995, Studies on Metamorphic Rocks and Minerals of the Western Alps. A Volume in Memory of Ugo Pognante, 11

10.1111/j.1525-1314.1998.00161.x

10.1016/s0009-2541(96)00150-7

10.1016/0098-3004(88)90061-1

10.1180/minmag.1952.029.218.04

10.2113/gssgfbull.S7-XVI.3.255

Caron J. M. 1977.Lithostratigraphie et tectonique des Schistes lustrés dans les Alpes cottiennes septentrionales et en Corse orientale. Mémoire 48 Ph.D. Thesis University of Louis Pasteur Strasbourg.

10.1007/BF00381838

10.1127/ejm/3/2/0263

Chopin C., 1983, Magnesiocarpholite and Magnesiochloritoid: two index minerals of pelitic blueschists and their preliminary phase relations in the model system MgO‐Al2O3‐SiO2‐H2O, American Journal of Science, 283, 72

10.1111/j.1525-1314.1998.00147.x

10.1007/s004100050141

Dal Piaz G. V., 1972, La zona Sesia‐Lanzo e l'evoluzione tettonico‐metamorfica delle alpi nordoccidentali interne, Memorie della Societa Geologica Italiana, 11, 433

10.1007/s004100050164

10.1007/BF00306554

Dickenson M. P., 1986, A garnet‐chlorite geothermometer, 99th Annual Meeting of the Geological Society of America, Boulder, 18, 584

10.2475/ajs.286.9.702

Dunoyer de Segonzac G., 1969, Passage Au Métamorphisme

10.1111/j.1525-1314.1995.tb00227.x

10.1346/CCMN.1995.0430504

10.1346/CCMN.1997.0450115

10.1016/0024-4937(90)90003-J

10.1093/petrology/37.2.201

10.1346/CCMN.1974.0220403

Frey M., 1987, Low Temperature Metamorphism, 9

10.1007/BF00373092

10.1346/CCMN.1998.0460109

10.1111/j.1525-1314.1987.tb00382.x

10.1007/BF00399367

Goffé B., 1997, Ferrocarpholite, chloritoïde et lawsonite dans les métapélites des unités du Versoyen et du Petit St Bernard (zone valaisanne, Alpes Occidentales), Schweizerisches Mineralogische und Petrographische Mitteilungen, 77, 137

Goffé B., 1986, High‐pressure metamorphism in the Western Alps: zoneography of metapelites, chronology and consequences, Schweizerisches Mineralogische und Petrographische Mitteilungen, 66, 41

Goffé B., 1973, Sur la présence d'une variété magnésienne de ferrocarpholite en Vanoise (Alpes francaises): sa signification probable dans le metamorphisme alpin, Comptes Rendus de L'academie des Sciences, 277, 1965

10.1016/0040-1951(88)90253-3

10.1127/ejm/4/4/0835

10.1007/BF00306528

Guidotti C. V., 1984, Micas, 357, 10.1515/9781501508820-014

10.1127/ejm/10/5/0815

10.1007/BF02904456

10.1111/j.1525-1314.1994.tb00059.x

Guidotti C. V., 1994, Petrogenetic implications of the Fe3+ content of muscovite in pelitic schists, American Mineralogist, 79, 793

10.1016/0009-2541(88)90678-X

10.1016/0009-2541(95)00106-9

10.1127/ejm/10/3/0395

10.1111/j.1525-1314.1990.tb00458.x

10.1111/j.1525-1314.1998.00140.x

10.1007/BF00375291

10.1346/CCMN.1990.0380301

10.1346/CCMN.1994.0420105

10.1016/s0012-821x(98)00079-x

10.1029/96TC01417

Juster T. C., 1987, NH4‐bearing illite in very low grade metamorphic rocks associated with coal, northeastern Pennsylvania, American Mineralogist, 725, 555

Kisch H. J., 1983, Diagenesis in Sediments and Sedimentary Rocks, 289

Kretz R., 1983, Ssymbls for rock‐forming minerals, American Mineralogist, 68, 277

10.1017/S0080456800003148

10.1130/SPE218-p111

10.1016/0264-8172(86)90044-9

Lemoine M., 2000, Tectonique Des Plaques Dans les Alpes

10.1127/ejm/10/6/1321

10.1016/0040-1951(81)90017-2

10.1016/0191-8141(84)90001-4

10.1007/BF00321751

Loucks R. R., 1991, The bound interlayer H2O content of potassic white micas: muscovite‐hydromuscovite‐hydropyrophyllite solutions, American Mineralogist, 76, 1563

Massonne H.‐J., 1992, Water–Rock Interaction, 1523

10.1017/CBO9780511573088.003

10.1007/BF00375235

10.1346/CCMN.1982.0300104

Michard, 1996, Did the Western Alps develop through an Oman‐type stage ? The geotectonic setting of high‐pressure metamorphism in two contrasting Tethyan transects, Eclogae Geologicae Helvetica, 89, 43

10.2475/ajs.296.5.473

Oberhänsli, 1995, Studies on Metamorphic Rocks and Minerals of the Western Alps. A Volume in Memory of Ugo Pognante, 221

Passchier, 1995, Microtectonics

10.1080/00206810009465085

Rieder, 1998, Nomenclature of the micas, Canadian Mineralogist, 36, 905

Saliot P. 1978.Le métamorphisme dans les Alpes françaises Ph.D. Thesis University of. Paris‐sud Orsay.

10.1016/0012-821X(82)90179-0

10.1127/ejm/6/1/0151

10.1016/s0024-4937(97)00013-3

Spear F. S., 1993, Metamorphic Phase Equilibria and Pressure‐Temperature‐Time Paths

Srodon J. S., 1984, Micas, 495, 10.1515/9781501508820-016

Stampfli G. M., 1997, Deep Structure of Switzerland. Results from NFP 20, 223

10.1007/BF01177590

10.1111/j.1440-1738.1994.tb00104.x

10.1127/ejm/3/2/0343

10.1127/ejm/4/3/0487

10.1007/BF00376643

10.1046/j.1525-1314.1999.00174.x

10.1111/j.1525-1314.1992.tb00109.x

10.1046/j.1365-3121.1998.00156.x

10.1007/BF00371995

Weaver C. E., 1973, Developments in Sedimentology, 15

10.1016/0016-7037(55)90001-6