Interference photolithography with the use of resists on the basis of chalcogenide glassy semiconductors

Optoelectronics, Instrumentation and Data Processing - Tập 46 Số 5 - Trang 483-490 - 2010
Viktor Dan’ko1, И. З. Индутный1, V.I. Min'ko1, P. E. Shepelyavyĭ1
1Lashkarev Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, pr. Nauki 41, Kiev, 03028, Ukraine

Tóm tắt

Từ khóa


Tài liệu tham khảo

M. T. Kostishyn, E. V. Mikhailovskaya, and P. F. Romanenko, “On the Photographic Sensitivity Effect of Thin Semiconductor Layers Applied to Metal Substrates,” Fiz. Tverd. Tela 8(2), 571–572 (1966).

M. T. Kostyshin, E. V. Mikhailovskaya, P. F. Romanenko, and G. A. Sandul, “On the Photographic Sensitivity of Thin Semiconductor Layers,” Zh. Nauch. Prikl. Fotogr. Kinematogr. 10(6), 450–451 (1965).

I. Z. Indutnyi, A. V. Stronski, P. F. Romanenko, et al., “Manufacturing of Holographic Optical Elements with the Help of Chalcogenide Resists,” Proc. SPIE 2321, 352–354 (1994).

I. Z. Indutnyi, A. V. Stronski, and S. A. Kostioukevich, “Holographic Optical Element Fabrication Using Chalcogenide Layers,” Opt. Eng. 34(4), 1030–1039 (1995).

M. Vlcek, P. J. S. Ewen, and T. Wagner, “High Efficiency Diffraction Gratings in As-S Layers,” J. Non-Cryst. Solids 227–230, 743–747 (1998).

V. I. Bredikhin, V. N. Burenina, Ya. K. Verevkin, et al., “Nanoscale Interference Lithography using an Pulsed UV-Laser,” Zh. Tekh. Fiz. 74(9), 86–90 (2004).

A. Shishido, I. B. Diviliansky, I. C. Khoo, et al., “Direct Fabrication of Two-Dimensional Titania Arrays Using Interference Photolithography,” Appl. Phys. Lett, 79(20), 3332–3334 (2001).

C. V. Shank and R. V. Schmidt, “Optical Technique for Producing 0.1 µm Periodic Surface Structures,” Appl. Phys. Lett. 23(3), 154–155 (1973).

D. S. Hobbs, B. D. MacLeod, and A. F. Kelsey, “Holographic Patterning Method and Tool Employing Prism Coupling,” US Patent No. 6 185 019 B1. (Feb. 06, 2001).

I. Z. Indutnyi, M. T. Kostyshin, O. P. Kasyarum, et al., Photostimulated Interactions in Metal-Semiconductor Structures (Naukova Dumka, Kiev, 1992) [in Russian].

V. I. Min’ko, P. E. Shepeliavyi, V. A. Dan’ko, et al., “Recording of High Efficiency Diffraction Gratings by He-Ne Laser,” Semicond. Phys., Quantum Electron. Optoelectron. 7(1), 88–92 (2004).

I. Z. Indutnyi, M. Popescu, A. Lorinczi, et al., “Fabrication of Submicrometer Periodic Structures Using Interference Lithography and Two-Layer Chalcogenide Photoresist,” J. Optoelectron. Adv. Mater. 11(12), 1967–1971 (2009).

S. A. Kostyukevich, P. E. Shepelyavyi, N. L. Moskalenko, et al., “Mastering of CD-ROM on Inorganic Photoresists,” Registr., Khran. Obr. Dannykh 3(4), 5–11 (2001).

V. G. Matyushova, V. F. Matyushov, I. Z. Indutnyi, et al., “Photopolymeric Materials AsMatrixes for Information Recording,” in Electronic Processes in Organic Materials, Proc. of the 2nd Int. Conf. (Printer LTD, Kiev, 1998), p. 169.

D. Maystre and R. Petit, “Essai de Determination Theorique du Profil Optimal d’un Reseau Holographique,” Opt. Commun. 4(1), 25–28 (1971).

E. G. Loewen, M. Neviere, and D. Maystre, “Grating Efficiency Theory As It Applies to Blazed and Holographic Gratings,” Appl. Opt. 16,(10), 2711–2721 (1977).

L. A. Dmitrieva, I. V. Golubenko, and M. Savitskii, “Diffraction Efficiency of Holographic Gratins of Symmetric Profiles,” Optikomekh. Promyshl., No. 1, 4–6 (1985).

E. Popov, J. Hoose, R. Frankel, et al., “Low Polarization Dependent Diffraction Grating for Wavelength Demultiplexing,” Opt. Express. 12(2), 269–275 (2004).

J. Hoose, R. Frankel, E. Popov, and M. Neviere, “Grating Device with High Diffraction Efficiency,” US Patent No. 6958859 B2 (Oct. 25, 2005).

I. Z. Indutnyi, I. Y. Maidanchuk, V. I. Min’ko, et al., “Visible Photoluminescence from Annealed Porous SiOx Films,” J. Optoelectron. Adv. Mater. 7(3), 1231–1236 (2005).