Interfacial engineering of solid electrolytes

Journal of Materiomics - Tập 1 - Trang 22-32 - 2015
Jian Luo1
1Department of Nanoengineering, Program of Materials Science and Engineering, University of California, San Diego, CA 92093-0448, USA

Tài liệu tham khảo

Shirpour, 2012, Dopant segregation and space charge effects in proton-conducting BaZrO3 perovskites, J Phys Chem C, 116, 2453, 10.1021/jp208213x Malavasi, 2010, Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features, Chem Soc Rev, 39, 4370, 10.1039/b915141a Ryu, 1999, Chemical stability and proton conductivity of doped BaCeO3–BaZrO3 solid solutions, Solid State Ionic, 125, 355, 10.1016/S0167-2738(99)00196-4 Ban, 2001, The effect of sintering on the grain boundary conductivity of lithium lanthanum titanates, Solid State Ionic, 140, 285, 10.1016/S0167-2738(01)00821-9 Yang, 2008, Roles of lithium ions and la/li-site vacancies in sinterability and total ionic conduction properties of polycrystalline Li3xLa2/3−xTiO3 solid electrolytes, J Alloy Compd, 458, 415, 10.1016/j.jallcom.2007.03.130 Inaguma, 1993, High ionic conductivity in lithium lanthanum titanate, Solid State Commun, 86, 689, 10.1016/0038-1098(93)90841-A Shirpour, 2012, Space charge depletion in grain boundaries of bazro3 proton conductors, Solid State Ionic, 225, 304, 10.1016/j.ssi.2012.03.026 Vollman, 1994, Grain boundary defect chemistry of acceptor-doped titanates: space charge layer width, J Am Ceram Soc, 77, 235, 10.1111/j.1151-2916.1994.tb06983.x Denk, 1997, Electrochemical investigations of SrTiO3 boundaries, J Electrochem Soc, 144, 3526, 10.1149/1.1838044 Aoki, 1996, Solute segregation and grain-boundary impedance in high-purity stabilized zirconia, J Am Ceram Soc, 79, 1169, 10.1111/j.1151-2916.1996.tb08569.x Lee, 2002, Inhomogeneity of grain-boundary resistivity in calcia-stabilized zirconia, J Am Ceram Soc, 85, 1622, 10.1111/j.1151-2916.2002.tb00324.x Guo, 2001, Grain boundary blocking effect in zirconia: a Schottky barrier analysis, J Electrochem Soc, 148, E121, 10.1149/1.1348267 Guo, 2002, Role of space charge in the grain boundary blocking effect in doped zirconia, Solid State Ionic, 154, 555, 10.1016/S0167-2738(02)00491-5 Guo, 2003, Blocking grain boundaries in yttria-doped and undoped ceria ceramics of high purity, J Am Ceram Soc, 86, 77, 10.1111/j.1151-2916.2003.tb03281.x Guo, 2006, Electrical properties of the grain boundaries of oxygen ion conductors: acceptor-doped zirconia and ceria, Prog Mater Sci, 51, 151, 10.1016/j.pmatsci.2005.07.001 Maier, 1985, Space-charge regions in solid 2-phase systems and their conduction contribution .1. Conductance enhancement in the system ionic conductor-inert phase and application on AgCl-Al2O3 and AgCl-SiO2, J Phys Chem Solid, 46, 309, 10.1016/0022-3697(85)90172-6 Maekawa, 2004, Size-dependent ionic conductivity observed for ordered mesoporous alumina-LiI composite, Solid State Ionic, 175, 281, 10.1016/j.ssi.2003.12.032 Jow, 1979, Effect of dispersed alumina particles on the electrical-conductivity of cuprous chloride, J Electrochem Soc, 126, 1963, 10.1149/1.2128835 Kumar, 1995, Composition and particle-size effects on ionic-conduction in KCl-Al2O3 composite solid electrolytes, J Phys Chem Solid, 56, 215, 10.1016/0022-3697(94)00168-5 Shahi, 1980, Fast ion-transport in silver-halide solid-solutions and multiphase systems, Appl Phys Lett, 37, 757, 10.1063/1.92023 Sata, 2002, Enhanced ionic conductivity and mesoscopic size effects in structures of BaF2 and CaF2, Solid State Ionic, 154, 497, 10.1016/S0167-2738(02)00488-5 Kaus, 2009, Conductivity studies and ion transport mechanism in Lii-Li(3)Po(4) solid electrolyte, Ionics, 15, 197, 10.1007/s11581-008-0252-x Azad, 2005, Nanoscale effects on ion conductance of layer-by-layer structures of gadolinia-doped ceria and zirconia, Appl Phys Lett, 86, 131906, 10.1063/1.1894615 Sayle, 2006, Ionic conductivity in nano-scale CeO2/YSZ heterolayers, J Mater Chem, 16, 1067, 10.1039/b511547g Wang, 2005, Microstructure of ZrO2-CeO2 hetero-multi-layer films grown on ysz substrate, Acta Mater, 53, 1921, 10.1016/j.actamat.2005.01.003 Karthikeyan, 2008, Temperature-dependent interfacial carrier transport in low-dimensional oxides using ionic conductor-insulator (YDZ-SiO2) superlattices, J Appl Phys, 104, 124314, 10.1063/1.3031220 Kosacki, 2004, Surface interface-related conductivity in nanometer thick YSZ films, Electrochem Solid State Lett, 7, A459, 10.1149/1.1809556 Kosacki, 2005, Nanoscale effects on the ionic conductivity in highly textured YSZ thin films, Solid State Ionic, 176, 1319, 10.1016/j.ssi.2005.02.021 Huang, 2006, High ionic conductivity in ultrathin nanocrystalline gadolinia-doped ceria films, Appl Phys Lett, 89, 143107, 10.1063/1.2358851 Ishihara, 2006, Extraordinary fast oxide ion conductivity in la1.61geo5-delta thin film consisting of nano-size grain, Solid State Ionic, 177, 1733, 10.1016/j.ssi.2006.06.005 Ishihara, 2006, Recent progress in LaGaO3 based solid electrolyte for intermediate temperature sofcs, Solid State Ionic, 177, 1949, 10.1016/j.ssi.2006.01.044 Yan, 2006, Nanosize effect on the oxide ionic conductivity of lanthanum germanite thin films (vol 8, pg a607, 2005), Electrochem Solid State Lett, 9, 10.1149/1.2128653 Yan, 2005, Nanosize effect on the oxide ionic conductivity of lanthanum germanite thin films, Electrochem Solid State Lett, 8, A607, 10.1149/1.2041333 Kulkarni, 2006, Synthesis and characterization of nanocrystalline (Zr0.84y0.16)o-1.92-(Ce0.85sm0.15)o-1.925 heterophase thin films, J Mater Res, 21, 500, 10.1557/jmr.2006.0041 Kang, 2009, Battery materials for ultrafast charging and discharging, Nature, 458, 190, 10.1038/nature07853 Chong, 2013, Surface stabilized LiNi0.5Mn1.5O4 cathode materials with high-rate capability and long cycle life for lithium ion batteries, Nano Energy, 2, 283, 10.1016/j.nanoen.2012.09.013 Sun, 2011, A mechanism for the improved rate capability of cathodes by lithium phosphate surficial films, Electrochem Commun, 13, 200, 10.1016/j.elecom.2010.12.013 Guo, 2009, Ionically conducting two-dimensional heterostructures, Adv Mater, 21, 2619, 10.1002/adma.200900412 Ramanathan, 2009, Interface-mediated ultrafast carrier conduction in oxide thin films and superlattices for energy, J Vac Sci Tech A, 27, 1126, 10.1116/1.3186616 Park, 2009, Interfacial protonic conduction in ceramics, J Eur Ceram Soc, 29, 2429, 10.1016/j.jeurceramsoc.2009.02.010 Fabbri, 2010, Ionic conductivity in oxide heterostructures: the role of interfaces, Sci Technol Adv Mater, 11, 10.1088/1468-6996/11/5/054503 Maier, 1995, Ionic-conduction in-space charge regions, Prog Solid State Chem, 23, 171, 10.1016/0079-6786(95)00004-E Maier, 2005, Nanoionics: Ion transport and electrochemical storage in confined systems, Nat Mater, 4, 805, 10.1038/nmat1513 Maier, 2001, Ionic and electronic carriers in solids - physical and chemical views of the equilibrium situation, Solid State Ionic, 143, 17, 10.1016/S0167-2738(01)00828-1 Maier, 2002, Thermodynamic aspects and morphology of nano-structured ion conductors - aspects of nano-ionics part i, Solid State Ionic, 154, 291, 10.1016/S0167-2738(02)00499-X Maier, 2002, Nano-sized mixed conductors (aspects of nano-ionics. part III), Solid State Ionic, 148, 367, 10.1016/S0167-2738(02)00075-9 Maier, 2003, Complex oxides: high temperature defect chemistry vs. Low temperature defect chemistry, Phys Chem Chem Phys, 5, 2164, 10.1039/B300139N Maier, 2003, Nano-ionics: trivial and non-trivial size effects on ion conduction in solids, Zeitschrift Fur Physikalische Chemie-Int J Res Phys Chem Chem Phys, 217, 415 Maier, 2004, High temperature versus low temperature defect chemistry, Solid State Ionic, 173, 1, 10.1016/j.ssi.2004.07.044 Maier, 2004, Ionic transport in nano-sized systems, Solid State Ionic, 175, 7, 10.1016/j.ssi.2004.09.051 Luo, 2007, Stabilization of nanoscale quasi-liquid interfacial films in inorganic materials: a review and critical assessment, Crit Rev Solid State Mater Sci, 32, 67, 10.1080/10408430701364388 Clarke, 1987, On the equilibrium thickness of intergranular glass phases in ceramic materials, J Am Ceram Soc, 70, 15, 10.1111/j.1151-2916.1987.tb04846.x Clarke, 1993, Possible electrical double-layer contribution to the equilibrium thickness of intergranular glass films in polycrystalline ceramics, J Am Ceram Soc, 76, 1201, 10.1111/j.1151-2916.1993.tb03741.x Bobeth, 1999, Diffuse interface description of intergranular films in polycrystalline ceramics, J Am Ceram Soc, 82, 1537, 10.1111/j.1151-2916.1999.tb01952.x Huang, 2014, A facile and generic method to improve cathode materials for lithium-ion batteries via utilizing nanoscale surface amorphous films of self-regulating thickness, Phys Chem Chem Phys, 16, 7786, 10.1039/C4CP00869C Kayyar, 2009, Surface adsorption and disordering in LiFePO4 based battery cathodes, Appl Phys Lett, 95, 221905, 10.1063/1.3270106 Qian, 2008, Anisotropic wetting of ZnO by Bi2O3 with and without nanometer-thick surficial amorphous films, Acta Mater, 56, 862, 10.1016/j.actamat.2007.10.049 Qian, 2008, Nanoscale surficial films and a surface transition in V2O5-TiO2-based ternary oxide systems, Acta Mater, 56, 4702, 10.1016/j.actamat.2008.05.027 Luo, 2008, Wetting and prewetting on ceramic surfaces, Annu Rev Mater Res, 38, 227, 10.1146/annurev.matsci.38.060407.132431 Qian, 2007, Vanadia-based equilibrium-thickness amorphous films on anatase (101) surfaces, Appl Phys Lett, 91, 10.1063/1.2768315 Luo, 2005, Nanometer-thick surficial films in oxides as a case of prewetting, Langmuir, 21, 7358, 10.1021/la0505420 Luo, 2000, Existence and stability of nanometer-thick disordered films on oxide surfaces, Acta Mater, 48, 4501, 10.1016/S1359-6454(00)00237-8 Luo, 1999, Equilibrium-thickness amorphous films on {11-20} surfaces of Bi2O3-doped ZnO, J Eur Ceram Soc, 19, 697, 10.1016/S0955-2219(98)00299-4 Chong, 2012, Towards the understanding of coatings on rate performance of lifepo4, J Power Sources, 200, 67, 10.1016/j.jpowsour.2011.10.073 Seah, 1980, Grain boundary segregation, J Phys F Metal Phys, 10, 1043, 10.1088/0305-4608/10/6/006 Hondros, 1977, The theory of grain boundary segregation in terms of surface adsorption analogues, Metall Trans, 8A, 1363, 10.1007/BF02642850 Cahn, 1982, Transition and phase equilibria among grain boundary structures, J de Physique, 43 Cahn, 1977, Critical point wetting, J Chem Phys, 66, 3667, 10.1063/1.434402 Kikuchi, 1980, Grain boundary melting transition in a two-dimensional lattice-gas model, Phys Rev B, 21, 1893, 10.1103/PhysRevB.21.1893 Kikuchi, 1987, Grain boundaries with impurities in a two-dimensional lattice-gas model, Phys Rev B, 36, 418, 10.1103/PhysRevB.36.418 Tang, 2006, Grain boundary transitions in binary alloys, Phys Rev Lett, 97, 10.1103/PhysRevLett.97.075502 Tang, 2006, Diffuse interface model for structural transitions of grain boundaries, Phys Rev B, 73, 10.1103/PhysRevB.73.024102 Bishop, 2005, A diffuse interface model of interfaces: grain boundaries in silicon nitride, Acta Mater, 53, 4755, 10.1016/j.actamat.2005.07.008 Kaplan, 2013, A review of wetting versus adsorption, complexions, and related phenomena: the Rosetta stone of wetting, J Mater Sci, 48, 5681, 10.1007/s10853-013-7462-y Tang, 2006, Grain boundary order-disorder transitions, J Mater Sci, 41, 7691, 10.1007/s10853-006-0608-4 Bishop, 2006, Continuum modelling and representations of interfaces and their transitions in materials, Mater Sci Eng A, 422, 102, 10.1016/j.msea.2006.01.013 Wynblatt, 2008, Solid-state wetting transitions at grain boundaries, Mater Sci Eng A, 495, 119, 10.1016/j.msea.2007.09.091 Wynblatt, 2007, Anisotropy of segregation at grain boundaries and surfaces (vol 37a, pg 2595, 2006), Metall Mater Trans A, 38A, 438, 10.1007/s11661-006-9039-8 Wynblatt, 2006, Anisotropy of segregation at grain boundaries and surfaces, Metall Mater Trans A, 37A, 2595, 10.1007/BF02586096 Luo, 2008, Grain boundary disordering in binary alloys, Appl Phys Lett, 92, 101901, 10.1063/1.2892631 Luo, 2009, Grain boundary complexions: the interplay of premelting, prewetting, and multilayer adsorption, Appl Phys Lett, 95, 10.1063/1.3212733 Luo, 2011, The role of a bilayer interfacial phase on liquid metal embrittlement, Science, 333, 1730, 10.1126/science.1208774 Luo, 2012, Developing interfacial phase diagrams for applications in activated sintering and beyond: current status and future directions, J Am Ceram Soc, 95, 2358, 10.1111/j.1551-2916.2011.05059.x Baram, 2011, Nanometer-thick equilibrium films: the interface between thermodynmaics and atomistics, Science, 332, 206, 10.1126/science.1201596 Baram, 2006, Intergranular films at au-sapphire interfaces, J Mater Sci, 41, 7775, 10.1007/s10853-006-0897-7 Dillon, 2007, Multiple grain boundary transitions in ceramics: a case study of alumnia, Acta Mater, 55, 5247, 10.1016/j.actamat.2007.04.051 Dillon, 2007, Complexion: a new concept for kinetic engineering in materials science, Acta Mater, 55, 6208, 10.1016/j.actamat.2007.07.029 Harmer, 2010, Interfacial kinetic engineering: how far have we come since kingery's inaugural sosman address?, J Am Ceram Soc, 93, 301, 10.1111/j.1551-2916.2009.03545.x Harmer, 2011, The phase behavior of interfaces, Science, 332, 182, 10.1126/science.1204204 Cantwell, 2014, Overview no. 152: grain boundary complexions, Acta Mater, 62, 1, 10.1016/j.actamat.2013.07.037 Ma, 2012, A grain-boundary phase transition in si-au, Scr Mater, 66, 203, 10.1016/j.scriptamat.2011.10.011 Kundu, 2012, Identification of a bilayer grain boundary complexion in Bi-doped Cu, Scr Mater, 68, 146, 10.1016/j.scriptamat.2012.10.012 Shi, 2011, Developing grain boundary diagrams as a materials science tool: a case study of nickel-doped molybdenum, Phys Rev B, 84, 10.1103/PhysRevB.84.014105 Shi, 2010, Decreasing the grain boundary diffusivity in binary alloys with increasing temperature, Phys Rev Lett, 105, 236102, 10.1103/PhysRevLett.105.236102 Shi, 2009, Grain boundary wetting and prewetting in Ni-doped Mo, Appl Phys Lett, 94, 251908, 10.1063/1.3155443 Dillon, 2009, Grain boundary complexions in ceramics and metals: an overview, JOM, 61, 38, 10.1007/s11837-009-0179-3 Ma, 2013, Grain boundary complexion transitions in WO3- and CuO-doped TiO2 bicrystals, Acta Mater, 61, 1691, 10.1016/j.actamat.2012.11.044 Luo, 1999, Origin of solid state activated sintering in Bi2O3-doped ZnO, J Am Ceram Soc, 82, 916, 10.1111/j.1151-2916.1999.tb01853.x Luo, 2005, Segregation-induced grain boundary premelting in nickel-doped tungsten, Appl Phys Lett, 87, 231902, 10.1063/1.2138796 Gupta, 2007, Thin intergranular films and solid-state activated sintering in nickel-doped tungsten, Acta Mater, 55, 3131, 10.1016/j.actamat.2007.01.017 Luo, 2008, Liquid-like interface complexion: from activated sintering to grain boundary diagrams, Curr Opin Solid State Mater Sci, 12, 81, 10.1016/j.cossms.2008.12.001 Dillon, 2008, Demystifying the role of sintering additives with “complexion”, J Eur Ceram Soc, 28, 1485, 10.1016/j.jeurceramsoc.2007.12.018 Lee, 2009, Highly resistive intergranular phases in solid electrolytes: an overview, Monatsh Chem, 140, 1081, 10.1007/s00706-009-0111-0 Ma, 2014, Atomic-scale origin of the large grain-boundary resistance in perovskite li-ion-conducting solid electrolytes, Energy Environ Sci, 7, 1638, 10.1039/c4ee00382a Tang, 2010, Electrochemically driven phase transitions in insertion electrodes or lithium-ion batteries: examples in lithium metal phosphate olivines, Annu Rev Mater Res, 40, 501, 10.1146/annurev-matsci-070909-104435 Tang, 2009, Model for the particle size, overpotential, and strain dependence of phase transition pathways in storage electrodes: application to nanoscale olivines, Chem Mater, 21, 1557, 10.1021/cm803172s Li, 2014, Discovery of nanoscale reduced surfaces and interfaces in vo2 thin films as a unique case of prewetting, Scr Mater, 78–79, 41, 10.1016/j.scriptamat.2014.01.029 Maier, 2003, Ionic and mixed conductors for electrochemical devices, Radiat Eff Defect Solid, 158, 1, 10.1080/1042015021000052322 Maier, 2004, Nano-ionics: more than just a fashionable slogan, J Electroceram, 13, 593, 10.1007/s10832-004-5163-2 Kim, 2003, Space charge conduction: Simple analytical solutions for ionic and mixed conductors and application to nanocrystalline ceria, Phys Chem Chem Phys, 5, 2268, 10.1039/B300170A Liang, 1973, Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes, J Electrochem Soc, 120, 1289, 10.1149/1.2403248 Wagner, 1972, The electrical conductivity of semi-conductors involving inclusions of another phase, J Phys Chem Solid, 33, 1051, 10.1016/S0022-3697(72)80265-8 Kumar, 2009, Space-charge-mediated superionic transport in lithium ion conducting glass-ceramics, J Electrochem Soc, 156, A506, 10.1149/1.3122903 Schirmeisen, 2007, Fast interfacial ionic conduction in nanostructured glass ceramics, Phys Rev Lett, 98, 225901, 10.1103/PhysRevLett.98.225901 Jain, 2000, Ionic conductivity of Na2SO4-Al2O3 composite electrolytes: mechanism and the role of the preparatory parameters, J Solid State Chem, 153, 287, 10.1006/jssc.2000.8764 Bobade, 2007, Investigation of the conductivity of Na2SO4-PbTiO3 composite electrolyte system: non linear electrical behavior at curie temperature of the dispersoid, Solid State Ionic, 178, 1585, 10.1016/j.ssi.2007.10.001 Bobade, 2007, Electrical properties of Na2SO4-based composite systems, Ionics, 13, 257, 10.1007/s11581-007-0081-3 Saito, 1996, Conductivity enhancement investigation at the interface between sodium-ion conductive Na4Zr2Si3O12 and solid superacid particles, J Mater Sci, 31, 2345, 10.1007/BF01152944 Saito, 1989, Ionic-conductivity enhancement of Na4Zr2Si3O12 by dispersed solid superacid SO-2(4)-/ZrO2, Solid State Ionic, 35, 241, 10.1016/0167-2738(89)90303-2 Bunde, 1986, Monte-carlo studies of ionic conductors containing an insulating 2nd phase, Solid State Ionic, 18–9, 147, 10.1016/0167-2738(86)90102-5 Roman, 1986, Conductivity of dispersed ionic conductors – a percolation model with 2 critical-points, Phys Rev B, 34, 3439, 10.1103/PhysRevB.34.3439 Sata, 2000, Mesoscopic fast ion conduction in nanometre-scale planar heterostructures, Nature, 408, 946, 10.1038/35050047 Li, 2011, Ionic space-charge depletion in lithium fluoride thin films on sapphire (0001) substrates, Adv Funct Mater, 21, 2901, 10.1002/adfm.201100303 Li, 2012, Charge carrier accumulation in lithium fluoride thin films due to li-ion absorption by titania (100) subsurface, Nano Lett, 12, 1241, 10.1021/nl203623h Li, 2012, Enhancement of the li conductivity in lif by introducing glass/crystal interfaces, Adv Funct Mater, 22, 1145, 10.1002/adfm.201101798 Peters, 2007, Ionic conductivity and activation energy for oxygen ion transport in superlattices - the multilayer system csz (ZrO2+CaO)/Al2O3, Solid State Ionic, 178, 67, 10.1016/j.ssi.2006.12.004 Korte, 2008, Ionic conductivity and activation energy for oxygen ion transport in superlattices – the semicoherent multilayer system ysz (ZrO2+9.5 mol% y(2)o(3))/y(2)o(3), Phys Chem Chem Phys, 10, 4623, 10.1039/b801675e Korte, 2009, Influence of interface structure on mass transport in phase boundaries between different ionic materials experimental studies and formal considerations, Monatsh Fur Chem, 140, 1069, 10.1007/s00706-009-0125-7 Schichtel, 2009, Elastic strain at interfaces and its influence on ionic conductivity in nanoscaled solid electrolyte thin films-theoretical considerations and experimental studies, Phys Chem Chem Phys, 11, 3043, 10.1039/b900148d Schichtel, 2010, On the influence of strain on ion transport: microstructure and ionic conductivity of nanoscale ysz vertical bar Sc2O3 multilayers, Phys Chem Chem Phys, 12, 14596, 10.1039/c0cp01018a Aydin, 2013, Oxygen tracer diffusion along interfaces of strained Y2O3/YSZ multilayers, Phys Chem Chem Phys, 15, 1944, 10.1039/C2CP43231E Korte, 2014, Coherency strain and its effect on ionic conductivity and diffusion in solid electrolytes – an improved model for nanocrystalline thin films and a review of experimental data, Phys Chem Chem Phys, 16, 24575, 10.1039/C4CP03055A Garcia-Barriocanal, 2008, Colossal ionic conductivity at interfaces of epitaxial ZrO2: Y2O3/SrTiO3 heterostructures, Science, 321, 676, 10.1126/science.1156393 Guo, 2009, Comment on “colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures”, Science, 324 Li, 2005, Molecular dynamics simulations of li insertion in a nanocrystalline V2O5 thin film cathode, J Electrochem Soc, 152, A364, 10.1149/1.1848345 Harley, 2007, Proton transport paths in lanthanum phosphate electrolytes, Solid State Ionic, 178, 769, 10.1016/j.ssi.2007.03.011 Mei, 2010, Role of amorphous boundary layer in enhancing ionic conductivity of lithium-lanthanum-titanate electrolyte, Electrochim Acta, 55, 2958, 10.1016/j.electacta.2010.01.036