Interfacial charge transfers and interactions drive rectifying and negative differential resistance behaviors in InAs/graphene van der Waals heterostructure
Tài liệu tham khảo
Novoselov, 2016, 2D materials and van der Waals heterostructures, Science, 353, 10.1126/science.aac9439
Geim, 2013, Van der Waals heterostructures, Nature, 499, 419, 10.1038/nature12385
Xia, 2017, Recent progress in van der Waals heterojunctions, Nanoscale, 9, 4324, 10.1039/C7NR00844A
Liu, 2016, Van der Waals heterostructures and devices, Nat. Rev. Mater., 1, 10.1038/natrevmats.2016.42
Li, 2017, Seeking the Dirac cones in the MoS2/WSe2 van der Waals heterostructure, Appl. Phys. Lett., 111, 10.1063/1.4998305
Tang, 2018, Metal and ligand effects on the stability and electronic properties of crystalline two-dimensional metal-benzenehexathiolate coordination compounds, J. Phys. Condens. Matter, 30, 10.1088/1361-648X/aae618
Fan, 2018, Improving performances of in-plane transition-metal dichalcogenide Schottky barrier field-effect transistors, ACS Appl. Mater. Interfaces, 10, 19271, 10.1021/acsami.8b04860
Fan, 2017, In-plane Schottky-barrier field-effect transistors based on 1T/2H heterojunctions of transition-metal dichalcogenides, Phys. Rev. B, 96, 10.1103/PhysRevB.96.165402
Liu, 2018, Two-dimensional van der Waals heterostructures constructed via perovskite (C4H9NH3)2XBr4 and black phosphorus, J. Phys. Chem. Lett., 9, 4822, 10.1021/acs.jpclett.8b02078
Tang, 2018, Tuning transport performance in two-dimensional metal-organic framework semiconductors: role of the metal d band, Appl. Phys. Lett., 112, 10.1063/1.5000448
Mohseni, 2014, Monolithic III-V nanowire solar cells on graphene via direct van der Waals epitaxy, Adv. Mater., 26, 3755, 10.1002/adma.201305909
Chung, 2016, Flexible GaN light-emitting diodes using GaN microdisks epitaxial laterally overgrown on graphene dots, Adv. Mater., 28, 7688, 10.1002/adma.201601894
Chen, 2018, Nanoporous carbon foam structures with excellent electronic properties predicted by first-principles studies, Carbon, 129, 809, 10.1016/j.carbon.2017.12.102
Chen, 2017, Breaking surface states causes transformation from metallic to semi-conducting behavior in carbon foam nanowires, Carbon, 111, 867, 10.1016/j.carbon.2016.10.085
Zhang, 2015, Direct growth of large-area graphene and boron nitride heterostructures by a co-segregation method, Nat. Commun., 6, 6519, 10.1038/ncomms7519
Wu, 2015, In situ synthesis of a large area boron nitride/graphene monolayer/boron nitride film by chemical vapor deposition, Nanoscale, 7, 7574, 10.1039/C5NR00889A
Chen, 2016, Thermal rectification and negative differential thermal resistance behaviors in graphene/hexagonal boron nitride heterojunction, Carbon, 100, 492, 10.1016/j.carbon.2016.01.045
Sun, 2015, A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries, Nat. Nanotechnol., 10, 980, 10.1038/nnano.2015.194
Padilha, 2015, Van der Waals heterostructure of phosphorene and graphene: tuning the Schottky barrier and doping by electrostatic gating, Phys. Rev. Lett., 114, 10.1103/PhysRevLett.114.066803
Hu, 2015, Tunable Schottky contacts in hybrid graphene–phosphorene nanocomposites, J. Mater. Chem. C, 3, 4756, 10.1039/C5TC00759C
Hu, 2013, Structural, electronic, and optical properties of hybrid silicene and graphene nanocomposite, J. Chem. Phys., 139, 10.1063/1.4824887
Cai, 2013, Stability and electronic properties of two-dimensional silicene and germanene on graphene, Phys. Rev. B, 88, 10.1103/PhysRevB.88.245408
Jariwala, 2014, Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides, ACS Nano, 8, 1102, 10.1021/nn500064s
Miwa, 2015, Van der Waals epitaxy of two-dimensional MoS2–graphene heterostructures in ultrahigh vacuum, ACS Nano, 9, 6502, 10.1021/acsnano.5b02345
Bertolazzi, 2013, Nonvolatile memory cells based on MoS2/graphene heterostructures, ACS Nano, 7, 3246, 10.1021/nn3059136
Ben Aziza, 2016, Van der Waals epitaxy of GaSe/graphene heterostructure: electronic and interfacial properties, ACS Nano, 10, 9679, 10.1021/acsnano.6b05521
Li, 2015, Van der Waals epitaxial growth of two-dimensional single-crystalline GaSe domains on graphene, ACS Nano, 9, 8078, 10.1021/acsnano.5b01943
Ji, 2016, Two-dimensional antimonene single crystals grown by van der Waals epitaxy, Nat. Commun., 7, 10.1038/ncomms13352
Lin, 2015, Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures, Nat. Commun., 6, 7311, 10.1038/ncomms8311
Wang, 2015, All-metallic vertical transistors based on stacked Dirac materials, Adv. Funct. Mater., 25, 68, 10.1002/adfm.201402904
Miao, 2015, High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios, Small, 11, 936, 10.1002/smll.201402312
Munshi, 2012, Vertically aligned GaAs nanowires on graphite and few-layer graphene: generic model and epitaxial growth, Nano Lett., 12, 4570, 10.1021/nl3018115
Hong, 2012, van der Waals epitaxy of InAs nanowires vertically aligned on single-layer graphene, Nano Lett., 12, 1431, 10.1021/nl204109t
Mohseni, 2013, InxGa1−x as nanowire growth on graphene: van der Waals epitaxy induced phase segregation, Nano Lett., 13, 1153, 10.1021/nl304569d
Choi, 2018, Crystal-phase intergradation in InAs nanostructures grown by van der Waals heteroepitaxy on graphene, Appl. Phys. Lett., 112, 10.1063/1.5017251
Hong, 2013, Van der Waals epitaxial double heterostructure: InAs/single-layer graphene/InAs, Adv. Mater., 25, 6847, 10.1002/adma.201302312
Miao, 2014, Single InAs nanowire room-temperature near-infrared photodetectors, ACS Nano, 8, 3628, 10.1021/nn500201g
Fu, 2016, Crystal phase- and orientation-dependent electrical transport properties of InAs nanowires, Nano Lett., 16, 2478, 10.1021/acs.nanolett.6b00045
Andrade, 2011, Graphene and graphene nanoribbons on InAs(110) and Au/InAs(110) surfaces: an ab initio study, Phys. Rev. B, 84, 10.1103/PhysRevB.84.165322
Yelgel, 2012, Ab initio investigation of the electronic properties of graphene on InAs(111)A, J. Phys. Condens. Matter, 24, 10.1088/0953-8984/24/48/485004
Cheng, 2014, Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes, Nano Lett., 14, 5590, 10.1021/nl502075n
Wang, 2015, Tunable GaTe-MoS2 van der Waals p-n junctions with novel optoelectronic performance, Nano Lett., 15, 7558, 10.1021/acs.nanolett.5b03291
Zeng, 2011, Nitrogen doping-induced rectifying behavior with large rectifying ratio in graphene nanoribbons device, J. Appl. Phys., 109, 10.1063/1.3600067
Zeng, 2011, Edge hydrogenation-induced spin-filtering and rectifying behaviors in the graphene nanoribbon heterojunctions, J. Phys. Chem. C, 115, 25072, 10.1021/jp208248v
Ning, 2017, Strong interfacial interaction and enhanced optical absorption in graphene/InAs and MoS2/InAs heterostructures, J. Mater. Chem. C, 5, 9429, 10.1039/C7TC03350H
Huang, 2014, Band structure engineering of monolayer MoS2on h-BN: first-principles calculations, J. Phys. D. Appl. Phys., 47, 10.1088/0022-3727/47/7/075301
Pan, 2016, Interfacial properties of monolayer MoSe2–metal contacts, J. Phys. Chem. C, 120, 13063, 10.1021/acs.jpcc.6b02696
Wang, 2017, Electrical contacts in monolayer arsenene devices, ACS Appl. Mater. Interfaces, 9, 29273, 10.1021/acsami.7b08513
Xu, 2013, Structural and electronic properties of graphene-ZnO interfaces: dispersion-corrected density functional theory investigations, Nanotechnology, 24, 10.1088/0957-4484/24/30/305401
Xue, 2018, Strain tuning of electronic properties of various dimension elemental tellurium with broken screw symmetry, J. Phys. Condens. Matter, 30, 10.1088/1361-648X/aaaea1
Dai, 2008, The effect of Cu on O adsorption on a ZnO(0001) surface: a first-principles study, J. Phys. Condens. Matter, 20, 10.1088/0953-8984/20/9/095002
Kresse, 1996, Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169
Adolph, 2001, Optical properties of semiconductors using projector-augmented waves, Phys. Rev. B, 63, 10.1103/PhysRevB.63.125108
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Grimme, 2006, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem., 27, 1787, 10.1002/jcc.20495
Grimme, 2007, Noncovalent interactions between graphene sheets and in multishell (hyper)fullerenes, J. Phys. Chem. C, 111, 11199, 10.1021/jp0720791
Antony, 2008, Structures and interaction energies of stacked graphene-nucleobase complexes, Phys. Chem. Chem. Phys., 10, 2722, 10.1039/b718788b
Pack, 1977, Special points for Brillouin-zone integrations—a reply, Phys. Rev. B, 16, 1748, 10.1103/PhysRevB.16.1748
Stokbro, 2012, Atomic-scale model for the contact resistance of the nickel-graphene interface, Phys. Rev. B, 85, 10.1103/PhysRevB.85.165442
Liu, 2013, Effect of contact area on electron transport through graphene-metal interface, J. Chem. Phys., 139, 10.1063/1.4818519
Ni, 2014, Tunable band gap and doping type in silicene by surface adsorption: towards tunneling transistors, Nanoscale, 6, 7609, 10.1039/C4NR00028E
Brandbyge, 2002, Density-functional method for nonequilibrium electron transport, Phys. Rev. B, 65, 10.1103/PhysRevB.65.165401
Büttiker, 1985, Generalized many-channel conductance formula with application to small rings, Phys. Rev. B, 31, 6207, 10.1103/PhysRevB.31.6207
He, 2010, Separation-dependent electronic transparency of monolayer graphene membranes on III-V semiconductor substrates, Nano Lett., 10, 3446, 10.1021/nl101527e
Ning, 2015, Remote p-type doping in GaSb/InAs core-shell nanowires, Sci. Rep., 5, 10.1038/srep10813
Farmer, 2009, Chemical doping and electron-hole conduction asymmetry in graphene devices, Nano Lett., 9, 388, 10.1021/nl803214a
Barraza-Lopez, 2010, Effects of metallic contacts on electron transport through graphene, Phys. Rev. Lett., 104, 10.1103/PhysRevLett.104.076807
Deng, 2017, Large spin rectifying and high-efficiency spin-filtering in superior molecular junction, Org. Electron., 50, 184, 10.1016/j.orgel.2017.07.046
Li, 2018, High-performance sub-10-nm monolayer black phosphorene tunneling transistors, Nano Res., 11, 2658, 10.1007/s12274-017-1895-6
Lu, 2005, Nonequilibrium quantum transport properties of organic molecules on silicon, Phys. Rev. Lett., 95, 10.1103/PhysRevLett.95.206805