Interfacial charge transfers and interactions drive rectifying and negative differential resistance behaviors in InAs/graphene van der Waals heterostructure

Applied Surface Science - Tập 496 - Trang 143629 - 2019
Feng Ning1,2, Shi-Zhang Chen2, Yong Zhang2,3, Gao-Hua Liao4, Ping-Ying Tang1, Zheng-Liang Li1, Li-Ming Tang2
1School of Physics and Electronics, Nanning Normal University, Nanning 530001, China
2Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China
3School of Mathematics, Physics and Energy Engineering, Hunan Institute of Technology, Hengyang 421002, China
4College of Physics and Electronics, Hunan Institute of Science and Technology, Yueyang 414006,China

Tài liệu tham khảo

Novoselov, 2016, 2D materials and van der Waals heterostructures, Science, 353, 10.1126/science.aac9439 Geim, 2013, Van der Waals heterostructures, Nature, 499, 419, 10.1038/nature12385 Xia, 2017, Recent progress in van der Waals heterojunctions, Nanoscale, 9, 4324, 10.1039/C7NR00844A Liu, 2016, Van der Waals heterostructures and devices, Nat. Rev. Mater., 1, 10.1038/natrevmats.2016.42 Li, 2017, Seeking the Dirac cones in the MoS2/WSe2 van der Waals heterostructure, Appl. Phys. Lett., 111, 10.1063/1.4998305 Tang, 2018, Metal and ligand effects on the stability and electronic properties of crystalline two-dimensional metal-benzenehexathiolate coordination compounds, J. Phys. Condens. Matter, 30, 10.1088/1361-648X/aae618 Fan, 2018, Improving performances of in-plane transition-metal dichalcogenide Schottky barrier field-effect transistors, ACS Appl. Mater. Interfaces, 10, 19271, 10.1021/acsami.8b04860 Fan, 2017, In-plane Schottky-barrier field-effect transistors based on 1T/2H heterojunctions of transition-metal dichalcogenides, Phys. Rev. B, 96, 10.1103/PhysRevB.96.165402 Liu, 2018, Two-dimensional van der Waals heterostructures constructed via perovskite (C4H9NH3)2XBr4 and black phosphorus, J. Phys. Chem. Lett., 9, 4822, 10.1021/acs.jpclett.8b02078 Tang, 2018, Tuning transport performance in two-dimensional metal-organic framework semiconductors: role of the metal d band, Appl. Phys. Lett., 112, 10.1063/1.5000448 Mohseni, 2014, Monolithic III-V nanowire solar cells on graphene via direct van der Waals epitaxy, Adv. Mater., 26, 3755, 10.1002/adma.201305909 Chung, 2016, Flexible GaN light-emitting diodes using GaN microdisks epitaxial laterally overgrown on graphene dots, Adv. Mater., 28, 7688, 10.1002/adma.201601894 Chen, 2018, Nanoporous carbon foam structures with excellent electronic properties predicted by first-principles studies, Carbon, 129, 809, 10.1016/j.carbon.2017.12.102 Chen, 2017, Breaking surface states causes transformation from metallic to semi-conducting behavior in carbon foam nanowires, Carbon, 111, 867, 10.1016/j.carbon.2016.10.085 Zhang, 2015, Direct growth of large-area graphene and boron nitride heterostructures by a co-segregation method, Nat. Commun., 6, 6519, 10.1038/ncomms7519 Wu, 2015, In situ synthesis of a large area boron nitride/graphene monolayer/boron nitride film by chemical vapor deposition, Nanoscale, 7, 7574, 10.1039/C5NR00889A Chen, 2016, Thermal rectification and negative differential thermal resistance behaviors in graphene/hexagonal boron nitride heterojunction, Carbon, 100, 492, 10.1016/j.carbon.2016.01.045 Sun, 2015, A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries, Nat. Nanotechnol., 10, 980, 10.1038/nnano.2015.194 Padilha, 2015, Van der Waals heterostructure of phosphorene and graphene: tuning the Schottky barrier and doping by electrostatic gating, Phys. Rev. Lett., 114, 10.1103/PhysRevLett.114.066803 Hu, 2015, Tunable Schottky contacts in hybrid graphene–phosphorene nanocomposites, J. Mater. Chem. C, 3, 4756, 10.1039/C5TC00759C Hu, 2013, Structural, electronic, and optical properties of hybrid silicene and graphene nanocomposite, J. Chem. Phys., 139, 10.1063/1.4824887 Cai, 2013, Stability and electronic properties of two-dimensional silicene and germanene on graphene, Phys. Rev. B, 88, 10.1103/PhysRevB.88.245408 Jariwala, 2014, Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides, ACS Nano, 8, 1102, 10.1021/nn500064s Miwa, 2015, Van der Waals epitaxy of two-dimensional MoS2–graphene heterostructures in ultrahigh vacuum, ACS Nano, 9, 6502, 10.1021/acsnano.5b02345 Bertolazzi, 2013, Nonvolatile memory cells based on MoS2/graphene heterostructures, ACS Nano, 7, 3246, 10.1021/nn3059136 Ben Aziza, 2016, Van der Waals epitaxy of GaSe/graphene heterostructure: electronic and interfacial properties, ACS Nano, 10, 9679, 10.1021/acsnano.6b05521 Li, 2015, Van der Waals epitaxial growth of two-dimensional single-crystalline GaSe domains on graphene, ACS Nano, 9, 8078, 10.1021/acsnano.5b01943 Ji, 2016, Two-dimensional antimonene single crystals grown by van der Waals epitaxy, Nat. Commun., 7, 10.1038/ncomms13352 Lin, 2015, Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures, Nat. Commun., 6, 7311, 10.1038/ncomms8311 Wang, 2015, All-metallic vertical transistors based on stacked Dirac materials, Adv. Funct. Mater., 25, 68, 10.1002/adfm.201402904 Miao, 2015, High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios, Small, 11, 936, 10.1002/smll.201402312 Munshi, 2012, Vertically aligned GaAs nanowires on graphite and few-layer graphene: generic model and epitaxial growth, Nano Lett., 12, 4570, 10.1021/nl3018115 Hong, 2012, van der Waals epitaxy of InAs nanowires vertically aligned on single-layer graphene, Nano Lett., 12, 1431, 10.1021/nl204109t Mohseni, 2013, InxGa1−x as nanowire growth on graphene: van der Waals epitaxy induced phase segregation, Nano Lett., 13, 1153, 10.1021/nl304569d Choi, 2018, Crystal-phase intergradation in InAs nanostructures grown by van der Waals heteroepitaxy on graphene, Appl. Phys. Lett., 112, 10.1063/1.5017251 Hong, 2013, Van der Waals epitaxial double heterostructure: InAs/single-layer graphene/InAs, Adv. Mater., 25, 6847, 10.1002/adma.201302312 Miao, 2014, Single InAs nanowire room-temperature near-infrared photodetectors, ACS Nano, 8, 3628, 10.1021/nn500201g Fu, 2016, Crystal phase- and orientation-dependent electrical transport properties of InAs nanowires, Nano Lett., 16, 2478, 10.1021/acs.nanolett.6b00045 Andrade, 2011, Graphene and graphene nanoribbons on InAs(110) and Au/InAs(110) surfaces: an ab initio study, Phys. Rev. B, 84, 10.1103/PhysRevB.84.165322 Yelgel, 2012, Ab initio investigation of the electronic properties of graphene on InAs(111)A, J. Phys. Condens. Matter, 24, 10.1088/0953-8984/24/48/485004 Cheng, 2014, Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes, Nano Lett., 14, 5590, 10.1021/nl502075n Wang, 2015, Tunable GaTe-MoS2 van der Waals p-n junctions with novel optoelectronic performance, Nano Lett., 15, 7558, 10.1021/acs.nanolett.5b03291 Zeng, 2011, Nitrogen doping-induced rectifying behavior with large rectifying ratio in graphene nanoribbons device, J. Appl. Phys., 109, 10.1063/1.3600067 Zeng, 2011, Edge hydrogenation-induced spin-filtering and rectifying behaviors in the graphene nanoribbon heterojunctions, J. Phys. Chem. C, 115, 25072, 10.1021/jp208248v Ning, 2017, Strong interfacial interaction and enhanced optical absorption in graphene/InAs and MoS2/InAs heterostructures, J. Mater. Chem. C, 5, 9429, 10.1039/C7TC03350H Huang, 2014, Band structure engineering of monolayer MoS2on h-BN: first-principles calculations, J. Phys. D. Appl. Phys., 47, 10.1088/0022-3727/47/7/075301 Pan, 2016, Interfacial properties of monolayer MoSe2–metal contacts, J. Phys. Chem. C, 120, 13063, 10.1021/acs.jpcc.6b02696 Wang, 2017, Electrical contacts in monolayer arsenene devices, ACS Appl. Mater. Interfaces, 9, 29273, 10.1021/acsami.7b08513 Xu, 2013, Structural and electronic properties of graphene-ZnO interfaces: dispersion-corrected density functional theory investigations, Nanotechnology, 24, 10.1088/0957-4484/24/30/305401 Xue, 2018, Strain tuning of electronic properties of various dimension elemental tellurium with broken screw symmetry, J. Phys. Condens. Matter, 30, 10.1088/1361-648X/aaaea1 Dai, 2008, The effect of Cu on O adsorption on a ZnO(0001) surface: a first-principles study, J. Phys. Condens. Matter, 20, 10.1088/0953-8984/20/9/095002 Kresse, 1996, Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169 Adolph, 2001, Optical properties of semiconductors using projector-augmented waves, Phys. Rev. B, 63, 10.1103/PhysRevB.63.125108 Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Grimme, 2006, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem., 27, 1787, 10.1002/jcc.20495 Grimme, 2007, Noncovalent interactions between graphene sheets and in multishell (hyper)fullerenes, J. Phys. Chem. C, 111, 11199, 10.1021/jp0720791 Antony, 2008, Structures and interaction energies of stacked graphene-nucleobase complexes, Phys. Chem. Chem. Phys., 10, 2722, 10.1039/b718788b Pack, 1977, Special points for Brillouin-zone integrations—a reply, Phys. Rev. B, 16, 1748, 10.1103/PhysRevB.16.1748 Stokbro, 2012, Atomic-scale model for the contact resistance of the nickel-graphene interface, Phys. Rev. B, 85, 10.1103/PhysRevB.85.165442 Liu, 2013, Effect of contact area on electron transport through graphene-metal interface, J. Chem. Phys., 139, 10.1063/1.4818519 Ni, 2014, Tunable band gap and doping type in silicene by surface adsorption: towards tunneling transistors, Nanoscale, 6, 7609, 10.1039/C4NR00028E Brandbyge, 2002, Density-functional method for nonequilibrium electron transport, Phys. Rev. B, 65, 10.1103/PhysRevB.65.165401 Büttiker, 1985, Generalized many-channel conductance formula with application to small rings, Phys. Rev. B, 31, 6207, 10.1103/PhysRevB.31.6207 He, 2010, Separation-dependent electronic transparency of monolayer graphene membranes on III-V semiconductor substrates, Nano Lett., 10, 3446, 10.1021/nl101527e Ning, 2015, Remote p-type doping in GaSb/InAs core-shell nanowires, Sci. Rep., 5, 10.1038/srep10813 Farmer, 2009, Chemical doping and electron-hole conduction asymmetry in graphene devices, Nano Lett., 9, 388, 10.1021/nl803214a Barraza-Lopez, 2010, Effects of metallic contacts on electron transport through graphene, Phys. Rev. Lett., 104, 10.1103/PhysRevLett.104.076807 Deng, 2017, Large spin rectifying and high-efficiency spin-filtering in superior molecular junction, Org. Electron., 50, 184, 10.1016/j.orgel.2017.07.046 Li, 2018, High-performance sub-10-nm monolayer black phosphorene tunneling transistors, Nano Res., 11, 2658, 10.1007/s12274-017-1895-6 Lu, 2005, Nonequilibrium quantum transport properties of organic molecules on silicon, Phys. Rev. Lett., 95, 10.1103/PhysRevLett.95.206805