Interfacial behavior of water bound to nitrocellulose containing residual nitric and sulfuric acids
Tóm tắt
To prepare nitrocellulose (NC), microcrystalline cellulose was treated in a mixture of nitric and sulfuric acids. Prepared NC containing a small amount of acids was studied at a different hydration degree (h = 10–1000 mg g−1) in different dispersion media (chloroform-d, acetone-d6 or their mixtures) using low-temperature 1H NMR spectroscopy. The hydration degree and the presence of residual acids affected the temperature dependence of the chemical shifts of proton resonance of water bound to NC. The Gibbs free energy of bound water became less negative with increasing hydration rate. The chloroform and acetone media affect the behavior of bound-to-NC water unfrozen at T<273 K differently. Quantum chemical calculations were performed using ab initio (HF/6-31G(d,p)), DFT (B3LYP/6-31G(d,p)) and semiempirical PM7 methods to analyze the interfacial behavior of water interacting with NC containing residual amounts of nitric and sulfuric acids.
Từ khóa
Tài liệu tham khảo
E.Yu. Orlova, Chemistry of High Explosives (Chemistry, Leningrad, 1973) (in Russian)
P.C. Painter, M.M. Coleman, Essentials of Polymer Science and Engineering (DEStech Publications, Inc., Lancaster, USA, 2009)
TorchLite 10.0.1 wwwhttp://www.cresset-group.com/products/torch/torchlite/ (accessed Sept 4, 2013)
A. Beveridge (Ed.), Forensic Investigations of Explosions (Taylor & Francis, London, 2003)
T. Urbanski, Chemistry and Technology of Explosives (Pergamon Press, New York, 1964) vol. 2
V.I. Gindich, L.V. Zabelin, G.N. Marchenko, Production of Cellulose Nitrates. Technology and Equipment (Central Research Institute of Scientific and Technical Information, Moscow, 1984) (in Russian)
J.A. Pople, W.G. Schneider, H.J. Bernstein, High-Resolution Nuclear Magnetic Resonance (McGraw-Hill Book Company, New York 1959)
V.M. Gun’ko, V.V. Turov, Nuclear Magnetic Resonance Studies of Interfacial Phenomena (CRC Press, Boca Raton, 2013)
V.P. Glushko (Ed.), Handbook of Thermodynamic Properties of Individual Substances (Nauka, Moscow, 1978) (in Russian)
M. J. Frisch et al, Gaussian 09, Revision D.01 (Gaussian, Inc., Wallingford CT, 2013)
J.J.P. Stewart, MOPAC 2012, Versions 13.234W and 13.234L (Stewart Computational Chemistry, Colorado Springs, CO, USA, 2013) http://openmopac.net/
V.M. Gun’ko, J. Theor. Comput. Chem. 2, 1 (2013)
I.P. Gragerov, V.K. Pogorelyi, I.F. Franchuk, The Hydrogen Bond and Fast Proton Exchange (Naukova Dumka, Kiev, 1978) (in Russian)
R.P. Bell, Proton in Chemistry (Chapman and Holly, London, 1959)