Đặc điểm giao diện và tính chất cơ học của mối hàn ma sát giữa hợp kim nhôm và thép siêu cường độ cao tiên tiến

Min Zhang1,2, Qian Xiang3, Peng Xue1,2, Fengchao Liu1,2, Lihui Wu2,1, Zhen Zhang2, Nianchun Lü3, Dingrui Ni2,1,4, Zongyi Ma2,1
1Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
2School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, China
3School of Materials Science and Engineering, Shenyang Ligong University, Shenyang, China
4Shandong Key Laboratory of Advanced Aluminum Materials and Technology Park, Binzhou Institute of Technology, Shandong, China

Tóm tắt

Việc kết hợp hiệu quả hợp kim nhôm với thép siêu cường độ cao tiên tiến (AUHSS, có cường độ trên 1 GPa) cho thấy tiềm năng đáng kể trong thiết kế nhẹ với sự gia tăng ứng dụng của hai loại vật liệu này. Tuy nhiên, hiện tại vẫn còn thiếu các nghiên cứu về hàn khuôn nóng giữa hợp kim nhôm và AUHSS. Trong nghiên cứu này, hàn khuôn nóng ma sát được thực hiện để kết hợp hợp kim nhôm 5182 với AUHSS DP1180. Sự kết hợp kim loại chặt chẽ mà không có khuyết tật quan sát được đã được hình thành tại giao diện của mối hàn nhôm-AUHSS, bao gồm một lớp hợp kim giữa (IMC) mỏng và một lớp hỗn hợp. Lớp IMC được cấu tạo từ các pha Al13Fe4 có kích thước nano trong khi lớp hỗn hợp bao gồm cấu trúc xen kẽ giữa thép - IMC. Các tinh thể Al siêu tinh thể và các hạt nhỏ có thể được quan sát thấy trong vùng nút. Nhờ vào giao diện liên kết kim loại tuyệt vời và vùng nút được tăng cường, mối hàn nhôm-AUHSS thất bại ở phía nhôm với cường độ kéo tối đa gần như tương tự như hợp kim nhôm.

Từ khóa

#hàn khuôn nóng ma sát #hợp kim nhôm #thép siêu cường độ cao #tính chất cơ học #đặc điểm giao diện

Tài liệu tham khảo

C. Lesch, N. Kwiaton, and F.B. Klose, Advanced High Strength Steels (AHSS) for Automotive Applications-Tailored Properties by Smart Microstructural Adjustments, Steel Res. Int., 2017, 88, p 1700210. A. Taub, E. De Moor, A. Luo, D.K. Matlock, J.G. Speer, and U. Vaidya, Materials for Automotive Lightweighting, Ann. Rev. Mater. Res., 2019, 49, p 327–359. J. Yang, J.P. Oliveira, Y. Li, C. Tan, C. Gao, Y. Zhao, and Z. Yu, Laser Techniques for Dissimilar Joining of Aluminum Alloys to Steels: A Critical Review, J. Mater. Process. Technol., 2022, 301, p 117443. Y. Zhao, Y. Long, and Z. Li, Research Progress of Transition Layer and Filler Wire for Laser Welding of Steel and Aluminum Dissimilar Metals, Int. J. Adv. Manuf. Technol., 2022, 119, p 4149–4158. J. Yang, Z.S. Yu, Y.L. Li, H. Zhang, W. Guo, P. Peng, and Y.N. Zhou, Formation and Toughening Mechanisms of Dispersions in Interfacial Intermetallics of Dissimilar Laser Al/Steel Joints, J. Mater. Eng. Perform., 2018, 27, p 4107–4114. M. Zhang, Y.D. Wang, P. Xue, H. Zhang, D.R. Ni, K.S. Wang, and Z.Y. Ma, High-Quality Dissimilar Friction Stir Welding of Al to Steel with no Contacting Between Tool and Steel Plate, Mater Charact, 2022, 191, p 112128. F.C. Liu, P. Dong, J. Zhang, W. Lu, A. Taub, and K. Sun, Alloy Amorphization Through Nanoscale Shear Localization at Al-Fe Interface, Mater. Today Phys., 2020, 15, p 100252. M. Reza-E-Rabby, K. Ross, N.R. Overman, M.J. Olszta, M. McDonnell, and S.A. Whalen, Joining Thick Section Aluminum to Steel with Suppressed FeAl Intermetallic Formation Via Friction Stir Dovetailing, Scr. Mater., 2018, 148, p 63–67. A. Elrefaey, M. Gouda, M. Takahashi, and K. Ikeuchi, Characterization of Aluminum/Steel Lap Joint by Friction Stir Welding, J. Mater. Eng. Perform., 2005, 14, p 10–17. M. Dehghani, S. Mousavi, and A. Amadeh, Effects of Welding Parameters and Tool Geometry on Properties of 3003–H18 Aluminum Alloy to Mild Steel Friction Stir Weld, Trans. Nonferrous Met. Soc. China, 2013, 23, p 1957–1965. M. Dehghani, A. Amadeh, and S.A.A. Akbari-Mousavi, Investigations on the Effects of Friction Stir Welding Parameters on Intermetallic and Defect Formation in Joining Aluminum Alloy to Mild Steel, Mater. Des., 2013, 49, p 433–441. P. Upadhyay, Y. Hovanski, S. Jana, and L.S. Fifield, Joining Dissimilar Materials using Friction Stir Scribe Technique, J. Manuf. Sci. Eng., 2017, 139, p 034501. T. Tanaka, T. Morishige, and T. Hirata, Comprehensive Analysis of Joint Strength for Dissimilar Friction Stir Welds of Mild Steel to Aluminum Alloys, Scr. Mater., 2009, 61, p 756–759. R. Beygi, R. Carbas, A. Queiros, E.A.S. Marques, R. Shi, and L.F.M. da Silva, Comparative Study Between Stainless Steel and Carbon Steel During Dissimilar Friction Stir Welding with Aluminum: Kinetics of Al-Fe Intermetallic Growth, Met. Mater. Int., 2021, 28, p 1948–1959. Y.N. Wei, J.L. Li, J.T. Xiong, and F.S. Zhang, Effect of Tool Pin Insertion Depth on Friction Stir Lap Welding of Aluminum to Stainless Steel, J. Mater. Eng. Perform., 2013, 22, p 3005–3013. V.N. Nguyen, Q.M. Nguyen, H.T.D. Thi, and S.C. Huang, Investigation on Lap-Joint Friction Stir Welding Between AA6351 Alloys and DP800 Steel Sheets, Indian Acad. Sci, 2018, 43, p 1–7. X. Liu, S.H. Lan, and J. Ni, Analysis of Process Parameters Effects on Friction Stir Welding of Dissimilar Aluminum Alloy to Advanced High Strength Steel, Mater. Des., 2014, 59, p 50–62. X. Liu, S.H. Lan, and J. Ni, Experimental Investigation on Joining Dissimilar Aluminum Alloy 6061 to TRIP 780/800 Steel Through Friction Stir Welding, J. Eng. Mater. Technol., 2015, 137, p 1–11. H. Das, R.N. Ghosh, and T.K. Pal, Study on the Formation and Characterization of the Intermetallics in Friction Stir Welding of Aluminum Alloy to Coated Steel Sheet Lap Joint, Metall. Mater. Trans. A, 2014, 45, p 5098–5106. H. Das, S.S. Jana, T.K. Pal, and A. De, Numerical and Experimental Investigation on Friction Stir Lap Welding of Aluminium to Steel, Sci. Technol. Weld. Join., 2014, 19, p 69–75. R.S. Coelho, A. Kostka, J.F. dos Santos, and A.R. Pyzalla, EBSD Technique Visualization of Material Flow in Aluminum to Steel Friction-Stir Dissimilar Welding, Adv. Eng. Mater., 2008, 10, p 1127–1133. T. Matsuda, R. Hatano, T. Ogura, R. Suzuki, H. Shoji, T. Sano, M. Ohata, and A. Hirose, Effect of Mismatch in Mechanical Properties on Interfacial Strength of Aluminum Alloy/Steel Dissimilar Joints, Mater. Sci. Eng. A, 2020, 786, p 139437. W. Ratanathavorn and A. Melander, Influence of Zinc on Intermetallic Compounds Formed in Friction Stir Welding of AA5754 Aluminium Alloy to Galvanised Ultra-High Strength Steel, Sci. Technol. Weld. Joining, 2017, 22, p 673–680. Q. Pang, H.Y. Yu, and Z.L. Hu, Investigation of Interfacial Layer for Friction Stir Welded AA7075-T6 Aluminum to DP1180 Steel Joints, J. Manuf. Sci. Eng., 2020, 142, p 1–10. S.Y. Anaman, H.H. Cho, H. Das, J.S. Lee, and S.T. Hong, Microstructure and Mechanical/Electrochemical Properties of Friction Stir Butt Welded Joint of Dissimilar Aluminum and Steel Alloys, Mater Charact, 2019, 154, p 67–79. T. Watanabe, H. Takayama, and A. Yanagisawa, Joining of Aluminum Alloy to Steel by Friction Stir Welding, J. Mater. Process. Technol., 2006, 178, p 342–349. P. Xue, D.R. Ni, D. Wang, B.L. Xiao, and Z.Y. Ma, Effect of Friction Stir Welding Parameters on the Microstructure and Mechanical Properties of the Dissimilar Al-Cu Joints, Mater. Sci. Eng. A, 2011, 528, p 4683–4689. R. Jabraeili, H.R. Jafarian, R. Khajeh, N. Park, Y. Kim, A. Heidarzadeh, and A.R. Eivani, Effect of FSW Process Parameters on Microstructure and Mechanical Properties of the Dissimilar AA2024 Al Alloy and 304 Stainless Steel Joints, Mater. Sci. Eng. A, 2021, 814, p 140981. D. Ogawa, T. Kakiuchi, K. Hashiba, and Y. Uematsu, Residual Stress Measurement of Al/Steel Dissimilar Friction Stir Weld, Sci. Technol. Weld. Join., 2019, 24, p 685–694. S. Zhao, J. Ni, G.Q. Wang, Y.H. Wang, Q.Z. Bi, Y.H. Zhao, and X. Liu, Effects of Tool Geometry on Friction Stir Welding of AA6061 to TRIP Steel, J. Mater. Process. Technol., 2018, 261, p 39–49. W.B. Lee, M. Schmuecker, U.A. Mercardo, G. Biallas, and S.B. Jung, Interfacial Reaction in Steel-Aluminum Joints Made by Friction Stir Welding, Scr. Mater., 2006, 55, p 355–358. T.R. McNelley, S. Swaminathan, and J.Q. Su, Recrystallization Mechanisms During Friction Stir Welding/Processing of Aluminum Alloys, Scr. Mater., 2008, 58, p 349–354. B.B. Wang, F.F. Chen, F. Liu, W.G. Wang, P. Xue, and Z.Y. Ma, Enhanced Mechanical Properties of Friction Stir Welded 5083Al-H19 Joints with Additional Water Cooling, J. Mater. Sci. Technol., 2017, 33, p 1009–1014. M. Sarkari Khorrami, S. Samadi, Z. Janghorban, and M. Movahedi, In-Situ Aluminum Matrix Composite Produced by Friction Stir Processing using Fe Particles, Mater. Sci. Eng. A, 2015, 641, p 380–390. R. Beygi, R.J.C. Carbas, A.Q. Barbosa, E.A.S. Marques, and L.F.M. da Silva, A comprehensive Analysis of a Pseudo-Brittle Fracture at the Interface of Intermetallic of η and Steel in Aluminum/Steel Joints Made by FSW: Microstructure and Fracture Behavior, Mater. Sci. Eng. A, 2021, 824, p 141812. T.H. Wang, H. Sidhar, R.S. Mishra, Y. Hovanski, P. Upadhyay, and B. Carlson, Evaluation of Intermetallic Compound Layer at Aluminum/Steel Interface Joined by Friction Stir Scribe Technology, Mater. Des., 2019, 174, p 107795. K. Wang, L. Chang, D. Gan, and H. Wang, Heteroepitaxial Growth of Fe2Al5 Inhibition Layer in Hot-Dip Galvanizing of an Interstitial-Free Steel, Thin Solid Films, 2010, 518, p 1935–1942. T. Tanaka, M. Nezu, S. Uchida, and T. Hirata, Mechanism of Intermetallic Compound Formation during the Dissimilar Friction Stir Welding of Aluminum and Steel, J. Mater. Sci., 2020, 55, p 3064–3072. K.K. Ramachandran, N. Murugan, and K. Shashi, Friction Stir Welding of Aluminum Alloy AA5052 and HSLA Steel: Mechanical and Microstructural Characterization of Dissimilar Friction Stir Welded Butt Joints, Weld. J., 2015, 94, p 219s–300s.