Interface formation energy, bonding, energy band alignment in α-NaYF 4 related core shell models: For future multi-layer core shell luminescence materials

Journal of Rare Earths - Tập 35 - Trang 315-334 - 2017
Bolong HUANG1, Hao DONG2, Ka-Leung Wong3, Lingdong SUN2, Chunhua YAN2
1Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
2Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
3Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR 999077, China

Tài liệu tham khảo

Auzel, 2004, Upconversion and anti-stokes processes with f and d ions in solids, Chem. Rev., 104, 139, 10.1021/cr020357g Gai, 2014, Recent progress in rare earth micro/nanocrystals: Soft chemical synthesis, luminescent properties, and biomedical applications, Chem. Rev., 114, 2343, 10.1021/cr4001594 Dong, 2015, Energy transfer in lanthanide upconversion studies for extended optical applications, Chem. Soc. Rev., 44, 1608, 10.1039/C4CS00188E Tu, 2015, Excitation energy migration dynamics in upconversion nanomaterials, Chem. Soc. Rev., 44, 1331, 10.1039/C4CS00168K Mai, 2007, Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb,Er core and core/shell-structured nanocrystals, J. Phys. Chem. C, 111, 13721, 10.1021/jp073920d Sun, 2014, Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: Small size and tunable emission/excitation spectra, Accounts. Chem. Res., 47, 1001, 10.1021/ar400218t Sedlmeier, 2015, Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications, Chem. Soc. Rev., 44, 1526, 10.1039/C4CS00186A Chen, 2015, Light upconverting core-shell nanostructures: Nanophotonic control for emerging applications, Chem. Soc. Rev., 44, 1680, 10.1039/C4CS00170B Chen, 2014, Upconversion nano-particles: Design, nanochemistry, and applications in theranostics, Chem. Rev., 114, 5161, 10.1021/cr400425h Gnach, 2015, Upconverting nanoparticles: Assessing the toxicity, Chem. Soc. Rev., 44, 1561, 10.1039/C4CS00177J Ibarra-Ruiz, 2016, Photoluminescent nanoplatforms in biomedical applications, Adv. Phys. X, 1, 194 Park, 2015, Upconverting nanoparticles: A versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging, Chem. Soc. Rev., 44, 1302, 10.1039/C4CS00173G Zheng, 2015, Lanthanide-doped upconversion nano-bioprobes: Electronic structures, optical properties, and biodetection, Chem. Soc. Rev., 44, 1379, 10.1039/C4CS00178H Sun, 2015, The biosafety of lanthanide upconversion nanomaterials, Chem. Soc. Rev., 44, 1509, 10.1039/C4CS00175C Tsang, 2015, Stimuli responsive upconversion luminescence nanomaterials and films for various applications, Chem. Soc. Rev., 44, 1585, 10.1039/C4CS00171K Chan, 2015, Combinatorial approaches for developing upconverting nanomaterials: High-throughput screening, modeling, and applications, Chem. Soc. Rev., 44, 1653, 10.1039/C4CS00205A Boyer, 2010, Absolute quantum yield measurements of colloidal NaYF4:Er3+,Yb3+ upconverting nanoparticles, Nanoscale, 2, 1417, 10.1039/c0nr00253d Zhou, 2015, Controlling upconversion nanocrystals for emerging applications, Nat. Nanotechn, 10, 924, 10.1038/nnano.2015.251 Chen, 2015, Photon upconversion in core-shell nanoparticles, Chem. Soc. Rev., 44, 1318, 10.1039/C4CS00151F Abel, 2009, Hard proof of the NaYF4/NaGdF4 nanocrystal core/shell structure, J. Am. Chem. Soc., 131, 14644, 10.1021/ja906971y Abel, 2011, Analysis of the shell thickness distribution on NaYF4/NaGdF4 core/shell nanocrystals by EELS and EDS, J. Phys. Chem. Lett., 2, 185, 10.1021/jz101593g Wang, 2010, Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles, Angew. Chem. Int. Ed., 49, 7456, 10.1002/anie.201003959 Wang, 2014, Multicolor tuning of lanthanide-doped nanoparticles by single wavelength excitation, Acc. Chem. Res., 47, 1378, 10.1021/ar5000067 Deng, 2015, Temporal full-colour tuning through non-steady-state upconversion, Nat. Nanotechn., 10, 237, 10.1038/nnano.2014.317 Wang, 2011, Tuning upconversion through energy migration in core-shell nanoparticles, Nat. Mater., 10, 968, 10.1038/nmat3149 Liu, 2015, Probing the nature of upconversion nanocrystals: Instrumentation matters, Chem. Soc. Rev., 44, 1479, 10.1039/C4CS00356J Huang, 2014, Lanthanide-doped LiLuF4 upconversion nanoprobes for the detection of disease biomarkers, Angew. Chem. Int. Ed., 53, 1252, 10.1002/anie.201309503 Huang, 2016, Fundamental view of electronic structures of β-NaYF4, β-NaGdF4, and β-NaLuF4, J. Phys. Chem. C, 120, 18858, 10.1021/acs.jpcc.6b05261 Chen, 2015, Establishing the structural integrity of core-shell nanoparticles against elemental migration using luminescent lanthanide probes, Angew. Chem. Int. Ed., 54, 12788, 10.1002/anie.201506157 Zhou, 2016, Constructing interfacial energy transfer for photon up- and down-conversion from lanthanides in a core-shell nanostructure, Angew. Chem. Int. Ed., 55, 12356, 10.1002/anie.201604682 Wang, 2012, Rare-earth nanoparticles with enhanced upconversion emission and suppressed rare-earth-ion leakage, Chem. Eur. J., 18, 5558, 10.1002/chem.201103485 Li, 2013, Successive layer-by-layer strategy for multi-shell epitaxial growth: Shell thickness and doping position dependence in upconverting optical properties, Chem. Mater., 25, 106, 10.1021/cm3033498 Su, 2012, The effect of surface coating on energy migration-mediated upconversion, J. Am. Chem. Soc., 134, 20849, 10.1021/ja3111048 Prorok, 2014, The impact of shell host (NaYF4/CaF2) and shell deposition methods on the up-conversion enhancement in Tb3+, Yb3+ codoped colloidal α-NaYF4 core-shell nanoparticles, Nanoscale, 6, 1855, 10.1039/C3NR05412H Chen, 2016, Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing, Nat. Commun., 7, 10304, 10.1038/ncomms10304 Han, 2016, Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water, Nat. Commun., 7, 13059, 10.1038/ncomms13059 Tung, 2000, Chemical bonding and fermi level pinning at metal-semiconductor interfaces, Phys. Rev. Lett., 84, 6078, 10.1103/PhysRevLett.84.6078 Tung, 2001, Formation of an electric dipole at metal-semiconductor interfaces, Phys. Rev. B, 64, 205310, 10.1103/PhysRevB.64.205310 Robertson, 2000, Band offsets of wide-band-gap oxides and implications for future electronic devices, J. Vac. Sci. Technol. B, 18, 1785, 10.1116/1.591472 Robertson, 2004, High dielectric constant oxides, Eur. Phys. J-appl. Phys., 28, 265, 10.1051/epjap:2004206 Auzel, 1980, Multiphonon processes, cross-relaxation and up-conversion in ion-activated solids, exemplified by minilaser materials, 213 Förster, 1948, Intermolecular energy migration and fluorescence, Ann. Phys-berlin., 437, 55, 10.1002/andp.19484370105 Dexter, 1953, A theory of sensitized luminescence in solids, J. Chem. Phys., 21, 836, 10.1063/1.1699044 Qiao, 2012, Triple-functional core-shell structured upconversion luminescent nanoparticles covalently grafted with photosensitizer for luminescent, magnetic resonance imaging and photodynamic therapy in vitro, Nanoscale, 4, 4611, 10.1039/c2nr30938f Johnson, 2010, Facile ligand-exchange with polyvinylpyrrolidone and subsequent silica coating of hydrophobic upconverting β-NaYF4:Yb3+/Er3+ nanoparticles, Nanoscale, 2, 771, 10.1039/b9nr00379g Tan, 2010, Monodisperse and core-shell structured NaYF4: Ln@SiO2 (Ln=Yb/Er, Yb/Tm) microspheres: Synthesis and characterization, J. Alloys Compd., 490, 684, 10.1016/j.jallcom.2009.10.139 Kaxiras, 2003 Harrison, 1981 Pantelides, 1976, Electronic structure, spectra, and properties of 4:2-coordinated materials. I. Crystalline and amorphous SiO2 and GeO2, Phys. Rev. B, 13, 2667, 10.1103/PhysRevB.13.2667 Harrison, 1976, Oscillator strengths in tetrahedral semiconductors, Phys. Rev. B, 14, 691, 10.1103/PhysRevB.14.691 Huang, 1950, Theory of light absorption and non-radiative transitions in f-centres, Proc. R. Soc. London, Ser., 204, 406, 10.1098/rspa.1950.0184 Huang, 2010, Bonding origin of optical contrast in phase-change memory materials, Phys. Rev. B, 81, 081204, 10.1103/PhysRevB.81.081204 Robertson, 2012, Bonding and optical contrast in phase change memory materials, Phys. Status Solidi B, 249, 1867, 10.1002/pssb.201200361 Dorenbos, 2004, Locating lanthanide impurity levels in the forbidden band of host crystals, J. Lumin., 108, 301, 10.1016/j.jlumin.2004.01.064 Dorenbos, 2005, Valence stability of lanthanide ions in inorganic compounds, Chem. Mater., 17, 6452, 10.1021/cm051456o Anderson, 1958, Absence of diffusion in certain random lattices, Phys. Rev., 109, 1492, 10.1103/PhysRev.109.1492 Huang, 2010, 1 Huang, 2016, 4f fine-structure levels as the dominant error in the electronic structures of binary lanthanide oxides, J. Comput. Chem., 37, 825, 10.1002/jcc.24272 Stouwdam, 2005, Colloidal nanoparticles of Ln3+-doped LaVO4: Energy transfer to visible- and near-infrared-emitting lanthanide ions, Langmuir., 21, 7003, 10.1021/la0505162 Clark, 2005, First principles methods using castep, Z. Kristallogr., 220, 567, 10.1524/zkri.220.5.567.65075 Vladimir, 1997, First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method, J. Phys. Condens. Matter, 9, 767, 10.1088/0953-8984/9/4/002 Lany, 2009, Polaronic hole localization and multiple hole binding of acceptors in oxide wide-gap semiconductors, Phys. Rev. B, 80, 085202, 10.1103/PhysRevB.80.085202 Lany, 2010, Generalized Koopmans density functional calculations reveal the deep acceptor state of NO in ZnO, Phys. Rev. B, 81, 205209, 10.1103/PhysRevB.81.205209 Morgan, 2010, Intrinsic n-type defect formation in TiO2: A comparison of rutile and anatase from GGA+U calculations, J. Phys. Chem. C, 114, 2321, 10.1021/jp9088047 Keating, 2011, Analysis of intrinsic defects in CeO2 using a Koopmans-like GGA+U approach, J. Phys. Chem. C, 116, 2443, 10.1021/jp2080034 Nolan, 2006, Hole localization in al doped silica: A DFT+U description, J. Chem. Phys., 125, 144701, 10.1063/1.2354468 Huang, 2014, Study of CeO2 and its native defects by density functional theory with repulsive potential, J. Phys. Chem. C, 118, 24248, 10.1021/jp506625h Huang, 2014, Superiority of DFT+U with non-linear core correction for open-shell binary rare-earth metal oxides: A case study of native point defects in cerium oxides, Philos. Mag., 94, 3052, 10.1080/14786435.2014.933908 Huang, 2016, Intrinsic deep hole trap levels in Cu2O with self-consistent repulsive Coulomb energy, Solid State Commun., 230, 49, 10.1016/j.ssc.2016.01.008 Huang, 2016, Strong compensation hinders the p-type doping of ZnO: A glance over surface defect levels, Solid State Commun., 237-238, 34, 10.1016/j.ssc.2016.03.010 Huang, 2016, Unraveling energy conversion modeling in the intrinsic persistent upconverted luminescence of solids: A study of native point defects in antiferromagnetic Er2O3, Phys. Chem. Chem. Phys., 18, 13564, 10.1039/C6CP01747A Marzari, 1997, Ensemble density-functional theory for ab initio molecular dynamics of metals and finite-temperature insulators, Phys. Rev. Lett., 79, 1337, 10.1103/PhysRevLett.79.1337 Hasnip, 2006, Electronic energy minimisation with ultrasoft pseudopotentials, Comput. Phys. Commun., 174, 24, 10.1016/j.cpc.2005.07.011 Laasonen, 1993, Car-parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials, Phys. Rev. B, 47, 10142, 10.1103/PhysRevB.47.10142 Kleinman, 1982, Efficacious form for model pseudopotentials, Phys. Rev. Lett., 48, 1425, 10.1103/PhysRevLett.48.1425 Louie, 1982, Nonlinear ionic pseudopotentials in spin-density-functional calculations, Phys. Rev. B, 26, 1738, 10.1103/PhysRevB.26.1738 Grinberg, 2000, Transferable relativistic dirac-slater pseudopotentials, Phys. Rev. B, 62, 2311, 10.1103/PhysRevB.62.2311 Rappe, 1990, Optimized pseudopotentials, Phys. Rev. B, 41, 1227, 10.1103/PhysRevB.41.1227 Pickard, 2000, Structural properties of lanthanide and actinide compounds within the plane wave pseudopotential approach, Phys. Rev. Lett., 85, 5122, 10.1103/PhysRevLett.85.5122 Zacherle, 2013, Ab initio analysis of the defect structure of ceria, Phys. Rev. B, 87, 134104, 10.1103/PhysRevB.87.134104 Huang, 2015, Native point defects in CaS: Focus on intrinsic defects and rare earth ion dopant levels for up-converted persistent luminescence, Inorg. Chem., 54, 11423, 10.1021/acs.inorgchem.5b02061 Huang, 2016, Energy harvesting and conversion mechanisms for intrinsic upconverted mechano-persistent luminescence in CaZnOS, Phys. Chem. Chem. Phys., 18, 25946, 10.1039/C6CP04706H Huang, 2016, “Energy relay center” for doped mechano-luminescence materials: A case study on Cu or Mn doped CaZnOS, Phys. Chem. Chem. Phys., 19, 1190, 10.1039/C6CP07472C Johnson, 2012, Self-focusing by ostwald ripening: A strategy for layer-by-layer epitaxial growth on upconverting nanocrystals, J. Am. Chem. Soc., 134, 11068, 10.1021/ja302717u Zhang, 2012, Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: Shell thickness dependence in upconverting optical properties, Nano Lett., 12, 2852, 10.1021/nl300421n