Interface formation energy, bonding, energy band alignment in α-NaYF 4 related core shell models: For future multi-layer core shell luminescence materials
Tài liệu tham khảo
Auzel, 2004, Upconversion and anti-stokes processes with f and d ions in solids, Chem. Rev., 104, 139, 10.1021/cr020357g
Gai, 2014, Recent progress in rare earth micro/nanocrystals: Soft chemical synthesis, luminescent properties, and biomedical applications, Chem. Rev., 114, 2343, 10.1021/cr4001594
Dong, 2015, Energy transfer in lanthanide upconversion studies for extended optical applications, Chem. Soc. Rev., 44, 1608, 10.1039/C4CS00188E
Tu, 2015, Excitation energy migration dynamics in upconversion nanomaterials, Chem. Soc. Rev., 44, 1331, 10.1039/C4CS00168K
Mai, 2007, Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb,Er core and core/shell-structured nanocrystals, J. Phys. Chem. C, 111, 13721, 10.1021/jp073920d
Sun, 2014, Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: Small size and tunable emission/excitation spectra, Accounts. Chem. Res., 47, 1001, 10.1021/ar400218t
Sedlmeier, 2015, Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications, Chem. Soc. Rev., 44, 1526, 10.1039/C4CS00186A
Chen, 2015, Light upconverting core-shell nanostructures: Nanophotonic control for emerging applications, Chem. Soc. Rev., 44, 1680, 10.1039/C4CS00170B
Chen, 2014, Upconversion nano-particles: Design, nanochemistry, and applications in theranostics, Chem. Rev., 114, 5161, 10.1021/cr400425h
Gnach, 2015, Upconverting nanoparticles: Assessing the toxicity, Chem. Soc. Rev., 44, 1561, 10.1039/C4CS00177J
Ibarra-Ruiz, 2016, Photoluminescent nanoplatforms in biomedical applications, Adv. Phys. X, 1, 194
Park, 2015, Upconverting nanoparticles: A versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging, Chem. Soc. Rev., 44, 1302, 10.1039/C4CS00173G
Zheng, 2015, Lanthanide-doped upconversion nano-bioprobes: Electronic structures, optical properties, and biodetection, Chem. Soc. Rev., 44, 1379, 10.1039/C4CS00178H
Sun, 2015, The biosafety of lanthanide upconversion nanomaterials, Chem. Soc. Rev., 44, 1509, 10.1039/C4CS00175C
Tsang, 2015, Stimuli responsive upconversion luminescence nanomaterials and films for various applications, Chem. Soc. Rev., 44, 1585, 10.1039/C4CS00171K
Chan, 2015, Combinatorial approaches for developing upconverting nanomaterials: High-throughput screening, modeling, and applications, Chem. Soc. Rev., 44, 1653, 10.1039/C4CS00205A
Boyer, 2010, Absolute quantum yield measurements of colloidal NaYF4:Er3+,Yb3+ upconverting nanoparticles, Nanoscale, 2, 1417, 10.1039/c0nr00253d
Zhou, 2015, Controlling upconversion nanocrystals for emerging applications, Nat. Nanotechn, 10, 924, 10.1038/nnano.2015.251
Chen, 2015, Photon upconversion in core-shell nanoparticles, Chem. Soc. Rev., 44, 1318, 10.1039/C4CS00151F
Abel, 2009, Hard proof of the NaYF4/NaGdF4 nanocrystal core/shell structure, J. Am. Chem. Soc., 131, 14644, 10.1021/ja906971y
Abel, 2011, Analysis of the shell thickness distribution on NaYF4/NaGdF4 core/shell nanocrystals by EELS and EDS, J. Phys. Chem. Lett., 2, 185, 10.1021/jz101593g
Wang, 2010, Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles, Angew. Chem. Int. Ed., 49, 7456, 10.1002/anie.201003959
Wang, 2014, Multicolor tuning of lanthanide-doped nanoparticles by single wavelength excitation, Acc. Chem. Res., 47, 1378, 10.1021/ar5000067
Deng, 2015, Temporal full-colour tuning through non-steady-state upconversion, Nat. Nanotechn., 10, 237, 10.1038/nnano.2014.317
Wang, 2011, Tuning upconversion through energy migration in core-shell nanoparticles, Nat. Mater., 10, 968, 10.1038/nmat3149
Liu, 2015, Probing the nature of upconversion nanocrystals: Instrumentation matters, Chem. Soc. Rev., 44, 1479, 10.1039/C4CS00356J
Huang, 2014, Lanthanide-doped LiLuF4 upconversion nanoprobes for the detection of disease biomarkers, Angew. Chem. Int. Ed., 53, 1252, 10.1002/anie.201309503
Huang, 2016, Fundamental view of electronic structures of β-NaYF4, β-NaGdF4, and β-NaLuF4, J. Phys. Chem. C, 120, 18858, 10.1021/acs.jpcc.6b05261
Chen, 2015, Establishing the structural integrity of core-shell nanoparticles against elemental migration using luminescent lanthanide probes, Angew. Chem. Int. Ed., 54, 12788, 10.1002/anie.201506157
Zhou, 2016, Constructing interfacial energy transfer for photon up- and down-conversion from lanthanides in a core-shell nanostructure, Angew. Chem. Int. Ed., 55, 12356, 10.1002/anie.201604682
Wang, 2012, Rare-earth nanoparticles with enhanced upconversion emission and suppressed rare-earth-ion leakage, Chem. Eur. J., 18, 5558, 10.1002/chem.201103485
Li, 2013, Successive layer-by-layer strategy for multi-shell epitaxial growth: Shell thickness and doping position dependence in upconverting optical properties, Chem. Mater., 25, 106, 10.1021/cm3033498
Su, 2012, The effect of surface coating on energy migration-mediated upconversion, J. Am. Chem. Soc., 134, 20849, 10.1021/ja3111048
Prorok, 2014, The impact of shell host (NaYF4/CaF2) and shell deposition methods on the up-conversion enhancement in Tb3+, Yb3+ codoped colloidal α-NaYF4 core-shell nanoparticles, Nanoscale, 6, 1855, 10.1039/C3NR05412H
Chen, 2016, Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing, Nat. Commun., 7, 10304, 10.1038/ncomms10304
Han, 2016, Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water, Nat. Commun., 7, 13059, 10.1038/ncomms13059
Tung, 2000, Chemical bonding and fermi level pinning at metal-semiconductor interfaces, Phys. Rev. Lett., 84, 6078, 10.1103/PhysRevLett.84.6078
Tung, 2001, Formation of an electric dipole at metal-semiconductor interfaces, Phys. Rev. B, 64, 205310, 10.1103/PhysRevB.64.205310
Robertson, 2000, Band offsets of wide-band-gap oxides and implications for future electronic devices, J. Vac. Sci. Technol. B, 18, 1785, 10.1116/1.591472
Robertson, 2004, High dielectric constant oxides, Eur. Phys. J-appl. Phys., 28, 265, 10.1051/epjap:2004206
Auzel, 1980, Multiphonon processes, cross-relaxation and up-conversion in ion-activated solids, exemplified by minilaser materials, 213
Förster, 1948, Intermolecular energy migration and fluorescence, Ann. Phys-berlin., 437, 55, 10.1002/andp.19484370105
Dexter, 1953, A theory of sensitized luminescence in solids, J. Chem. Phys., 21, 836, 10.1063/1.1699044
Qiao, 2012, Triple-functional core-shell structured upconversion luminescent nanoparticles covalently grafted with photosensitizer for luminescent, magnetic resonance imaging and photodynamic therapy in vitro, Nanoscale, 4, 4611, 10.1039/c2nr30938f
Johnson, 2010, Facile ligand-exchange with polyvinylpyrrolidone and subsequent silica coating of hydrophobic upconverting β-NaYF4:Yb3+/Er3+ nanoparticles, Nanoscale, 2, 771, 10.1039/b9nr00379g
Tan, 2010, Monodisperse and core-shell structured NaYF4: Ln@SiO2 (Ln=Yb/Er, Yb/Tm) microspheres: Synthesis and characterization, J. Alloys Compd., 490, 684, 10.1016/j.jallcom.2009.10.139
Kaxiras, 2003
Harrison, 1981
Pantelides, 1976, Electronic structure, spectra, and properties of 4:2-coordinated materials. I. Crystalline and amorphous SiO2 and GeO2, Phys. Rev. B, 13, 2667, 10.1103/PhysRevB.13.2667
Harrison, 1976, Oscillator strengths in tetrahedral semiconductors, Phys. Rev. B, 14, 691, 10.1103/PhysRevB.14.691
Huang, 1950, Theory of light absorption and non-radiative transitions in f-centres, Proc. R. Soc. London, Ser., 204, 406, 10.1098/rspa.1950.0184
Huang, 2010, Bonding origin of optical contrast in phase-change memory materials, Phys. Rev. B, 81, 081204, 10.1103/PhysRevB.81.081204
Robertson, 2012, Bonding and optical contrast in phase change memory materials, Phys. Status Solidi B, 249, 1867, 10.1002/pssb.201200361
Dorenbos, 2004, Locating lanthanide impurity levels in the forbidden band of host crystals, J. Lumin., 108, 301, 10.1016/j.jlumin.2004.01.064
Dorenbos, 2005, Valence stability of lanthanide ions in inorganic compounds, Chem. Mater., 17, 6452, 10.1021/cm051456o
Anderson, 1958, Absence of diffusion in certain random lattices, Phys. Rev., 109, 1492, 10.1103/PhysRev.109.1492
Huang, 2010, 1
Huang, 2016, 4f fine-structure levels as the dominant error in the electronic structures of binary lanthanide oxides, J. Comput. Chem., 37, 825, 10.1002/jcc.24272
Stouwdam, 2005, Colloidal nanoparticles of Ln3+-doped LaVO4: Energy transfer to visible- and near-infrared-emitting lanthanide ions, Langmuir., 21, 7003, 10.1021/la0505162
Clark, 2005, First principles methods using castep, Z. Kristallogr., 220, 567, 10.1524/zkri.220.5.567.65075
Vladimir, 1997, First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method, J. Phys. Condens. Matter, 9, 767, 10.1088/0953-8984/9/4/002
Lany, 2009, Polaronic hole localization and multiple hole binding of acceptors in oxide wide-gap semiconductors, Phys. Rev. B, 80, 085202, 10.1103/PhysRevB.80.085202
Lany, 2010, Generalized Koopmans density functional calculations reveal the deep acceptor state of NO in ZnO, Phys. Rev. B, 81, 205209, 10.1103/PhysRevB.81.205209
Morgan, 2010, Intrinsic n-type defect formation in TiO2: A comparison of rutile and anatase from GGA+U calculations, J. Phys. Chem. C, 114, 2321, 10.1021/jp9088047
Keating, 2011, Analysis of intrinsic defects in CeO2 using a Koopmans-like GGA+U approach, J. Phys. Chem. C, 116, 2443, 10.1021/jp2080034
Nolan, 2006, Hole localization in al doped silica: A DFT+U description, J. Chem. Phys., 125, 144701, 10.1063/1.2354468
Huang, 2014, Study of CeO2 and its native defects by density functional theory with repulsive potential, J. Phys. Chem. C, 118, 24248, 10.1021/jp506625h
Huang, 2014, Superiority of DFT+U with non-linear core correction for open-shell binary rare-earth metal oxides: A case study of native point defects in cerium oxides, Philos. Mag., 94, 3052, 10.1080/14786435.2014.933908
Huang, 2016, Intrinsic deep hole trap levels in Cu2O with self-consistent repulsive Coulomb energy, Solid State Commun., 230, 49, 10.1016/j.ssc.2016.01.008
Huang, 2016, Strong compensation hinders the p-type doping of ZnO: A glance over surface defect levels, Solid State Commun., 237-238, 34, 10.1016/j.ssc.2016.03.010
Huang, 2016, Unraveling energy conversion modeling in the intrinsic persistent upconverted luminescence of solids: A study of native point defects in antiferromagnetic Er2O3, Phys. Chem. Chem. Phys., 18, 13564, 10.1039/C6CP01747A
Marzari, 1997, Ensemble density-functional theory for ab initio molecular dynamics of metals and finite-temperature insulators, Phys. Rev. Lett., 79, 1337, 10.1103/PhysRevLett.79.1337
Hasnip, 2006, Electronic energy minimisation with ultrasoft pseudopotentials, Comput. Phys. Commun., 174, 24, 10.1016/j.cpc.2005.07.011
Laasonen, 1993, Car-parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials, Phys. Rev. B, 47, 10142, 10.1103/PhysRevB.47.10142
Kleinman, 1982, Efficacious form for model pseudopotentials, Phys. Rev. Lett., 48, 1425, 10.1103/PhysRevLett.48.1425
Louie, 1982, Nonlinear ionic pseudopotentials in spin-density-functional calculations, Phys. Rev. B, 26, 1738, 10.1103/PhysRevB.26.1738
Grinberg, 2000, Transferable relativistic dirac-slater pseudopotentials, Phys. Rev. B, 62, 2311, 10.1103/PhysRevB.62.2311
Rappe, 1990, Optimized pseudopotentials, Phys. Rev. B, 41, 1227, 10.1103/PhysRevB.41.1227
Pickard, 2000, Structural properties of lanthanide and actinide compounds within the plane wave pseudopotential approach, Phys. Rev. Lett., 85, 5122, 10.1103/PhysRevLett.85.5122
Zacherle, 2013, Ab initio analysis of the defect structure of ceria, Phys. Rev. B, 87, 134104, 10.1103/PhysRevB.87.134104
Huang, 2015, Native point defects in CaS: Focus on intrinsic defects and rare earth ion dopant levels for up-converted persistent luminescence, Inorg. Chem., 54, 11423, 10.1021/acs.inorgchem.5b02061
Huang, 2016, Energy harvesting and conversion mechanisms for intrinsic upconverted mechano-persistent luminescence in CaZnOS, Phys. Chem. Chem. Phys., 18, 25946, 10.1039/C6CP04706H
Huang, 2016, “Energy relay center” for doped mechano-luminescence materials: A case study on Cu or Mn doped CaZnOS, Phys. Chem. Chem. Phys., 19, 1190, 10.1039/C6CP07472C
Johnson, 2012, Self-focusing by ostwald ripening: A strategy for layer-by-layer epitaxial growth on upconverting nanocrystals, J. Am. Chem. Soc., 134, 11068, 10.1021/ja302717u
Zhang, 2012, Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: Shell thickness dependence in upconverting optical properties, Nano Lett., 12, 2852, 10.1021/nl300421n