Interface evaluation of a Bi–Zn eutectic solder alloy: Effects of different substrate materials on thermal contact conductance

International Journal of Thermal Sciences - Tập 160 - Trang 106685 - 2021
Rudimylla Septimio1, Clarissa Cruz2, Marcella Xavier3, Thiago Lima2, Amauri Garcia2, José Eduardo Spinelli4, Noé Cheung2
1Institute of Geosciences and Engineering, Federal University of the South and Southeast of Pará, UNIFESSPA, Marabá, PA, 68050-080, Brazil
2Department of Manufacturing and Materials Engineering, University of Campinas, UNICAMP, 13083860, Campinas, SP, Brazil
3Federal University of São Carlos, Graduate Program in Materials Science and Engineering, 13565905, São Carlos, SP, Brazil
4Department of Materials Engineering, Federal University of São Carlos, UFSCar, 13565905, São Carlos, SP, Brazil

Tài liệu tham khảo

Suganuma, 2009, High-temperature lead-free solders: properties and possibilities, JOM (J. Occup. Med.), 61, 64 Altıntas, 2016, The measurements of electrical and thermal conductivity variations with temperature and phonon component of the thermal conductivity in Sn-Cd-Sb, Sn-In-Cu, Sn-Ag-Bi and Sn-Bi-Zn alloys, Int. J. Therm. Sci., 100, 1, 10.1016/j.ijthermalsci.2015.09.004 Spinelli, 2014, The use of a directional solidification technique to investigate the interrelationship of thermal parameters, microstructure and microhardness of Bi-Ag solder alloys, Mater. Char., 96, 115, 10.1016/j.matchar.2014.07.023 Septimio, 2017, Interrelationship of thermal parameters, microstructure and microhardness of directionally solidified Bi–Zn solder alloys, Microelectron. Reliab., 78, 100, 10.1016/j.microrel.2017.08.007 Cho, 2015, Developments of Bi-Sb-Cu alloys as a high-temperature Pb-free solder, 1251 Frear, 2001, Pb-free solders for flip-chip interconnects, JOM (J. Occup. Med.), 53, 28 Curtulo, 2019, The application of an analytical model to solve an inverse heat conduction problem: transient solidification of a Sn-Sb peritectic solder alloy on distinct substrates, J. Manuf. Process., 48, 164, 10.1016/j.jmapro.2019.10.029 Che, 2012, Characterization of IMC layer and its effect on thermomechanical fatigue life of Sn-3.8Ag-0.7Cu solder joints, J. Alloys Compd., 541, 6, 10.1016/j.jallcom.2012.06.104 Septimio, 2019, Correlation between microstructure and corrosion behaviour of Bi-Zn solder alloys, Corrosion Eng. Sci. Technol., 54, 362, 10.1080/1478422X.2019.1600836 Şahin, 2012, The effects of temperature gradient and growth rate on the microstructure of directionally solidified Sn-3.5Ag eutectic solder, J. Mater. Sci. Mater. Electron., 23, 484, 10.1007/s10854-011-0422-x Silva, 2015, Evaluation of solder/substrate thermal conductance and wetting angle of Sn–0.7 wt%Cu–(0–0.1 wt%Ni) solder alloys, Mater. Lett., 142, 163, 10.1016/j.matlet.2014.11.088 Shen, 2009, Wettability of some refractory materials by molten SiO2–MnO–TiO2–FeOx slag, Mater. Chem. Phys., 114, 681, 10.1016/j.matchemphys.2008.10.021 Xi, 2015, High-temperature wetting and interfacial interaction between liquid Al and TiB2 ceramic, J. Mater. Sci., 50, 2682, 10.1007/s10853-015-8814-6 Baumli, 2008, Wettability of carbon surfaces by pure molten alkali chlorides and their penetration into a porous graphite substrate, Mater. Sci. Eng. A-Struct., 495, 192, 10.1016/j.msea.2007.11.093 Cheung, 2009, Melt characteristics and solidification growth direction with respect to gravity affecting the interfacial heat transfer coefficient of chill castings, Mater. Des., 30, 3592, 10.1016/j.matdes.2009.02.025 Incropera, 2006 Kreith, 2011 Loulou, 1999, Estimation of thermal contact resistance during the first stages of metal solidification process: I-experiment principle and modelisation, Int. J. Heat Mass Tran., 42, 2119, 10.1016/S0017-9310(98)00333-0 Mirbagheru, 2007, Modelling of metal-mold interface resistance in the A356 Aluminum alloy casting process, Commun. Numer. Methods Eng., 23, 295, 10.1002/cnm.903 Samarasekera, 1978, The continuous-casting, Int. Met. Rev., 236 Cheung, 2009, Interfacial heat transfer coefficients and solidification of an aluminum alloy in a rotary continuous caster, Int. J. Heat Mass Tran., 52, 451, 10.1016/j.ijheatmasstransfer.2008.07.003 Gale, 2003 Thermocalc Software: TCAL5, TCS Al-Based Alloy Database., (n.d.). Callister, 2007 Silva, 2016, Solder/substrate interfacial thermal conductance and wetting angles of Bi–Ag solder alloys, J. Mater. Sci. Mater. Electron., 27, 1994, 10.1007/s10854-015-3983-2 Sayyadi, 2019, The role of intermetallic compounds in controlling the microstructural, physical and mechanical properties of Cu-[Sn-Ag-Cu-Bi]-Cu solder joints, Sci. Rep., 9, 1, 10.1038/s41598-019-44758-3