Interface evaluation of a Bi–Zn eutectic solder alloy: Effects of different substrate materials on thermal contact conductance
Tài liệu tham khảo
Suganuma, 2009, High-temperature lead-free solders: properties and possibilities, JOM (J. Occup. Med.), 61, 64
Altıntas, 2016, The measurements of electrical and thermal conductivity variations with temperature and phonon component of the thermal conductivity in Sn-Cd-Sb, Sn-In-Cu, Sn-Ag-Bi and Sn-Bi-Zn alloys, Int. J. Therm. Sci., 100, 1, 10.1016/j.ijthermalsci.2015.09.004
Spinelli, 2014, The use of a directional solidification technique to investigate the interrelationship of thermal parameters, microstructure and microhardness of Bi-Ag solder alloys, Mater. Char., 96, 115, 10.1016/j.matchar.2014.07.023
Septimio, 2017, Interrelationship of thermal parameters, microstructure and microhardness of directionally solidified Bi–Zn solder alloys, Microelectron. Reliab., 78, 100, 10.1016/j.microrel.2017.08.007
Cho, 2015, Developments of Bi-Sb-Cu alloys as a high-temperature Pb-free solder, 1251
Frear, 2001, Pb-free solders for flip-chip interconnects, JOM (J. Occup. Med.), 53, 28
Curtulo, 2019, The application of an analytical model to solve an inverse heat conduction problem: transient solidification of a Sn-Sb peritectic solder alloy on distinct substrates, J. Manuf. Process., 48, 164, 10.1016/j.jmapro.2019.10.029
Che, 2012, Characterization of IMC layer and its effect on thermomechanical fatigue life of Sn-3.8Ag-0.7Cu solder joints, J. Alloys Compd., 541, 6, 10.1016/j.jallcom.2012.06.104
Septimio, 2019, Correlation between microstructure and corrosion behaviour of Bi-Zn solder alloys, Corrosion Eng. Sci. Technol., 54, 362, 10.1080/1478422X.2019.1600836
Şahin, 2012, The effects of temperature gradient and growth rate on the microstructure of directionally solidified Sn-3.5Ag eutectic solder, J. Mater. Sci. Mater. Electron., 23, 484, 10.1007/s10854-011-0422-x
Silva, 2015, Evaluation of solder/substrate thermal conductance and wetting angle of Sn–0.7 wt%Cu–(0–0.1 wt%Ni) solder alloys, Mater. Lett., 142, 163, 10.1016/j.matlet.2014.11.088
Shen, 2009, Wettability of some refractory materials by molten SiO2–MnO–TiO2–FeOx slag, Mater. Chem. Phys., 114, 681, 10.1016/j.matchemphys.2008.10.021
Xi, 2015, High-temperature wetting and interfacial interaction between liquid Al and TiB2 ceramic, J. Mater. Sci., 50, 2682, 10.1007/s10853-015-8814-6
Baumli, 2008, Wettability of carbon surfaces by pure molten alkali chlorides and their penetration into a porous graphite substrate, Mater. Sci. Eng. A-Struct., 495, 192, 10.1016/j.msea.2007.11.093
Cheung, 2009, Melt characteristics and solidification growth direction with respect to gravity affecting the interfacial heat transfer coefficient of chill castings, Mater. Des., 30, 3592, 10.1016/j.matdes.2009.02.025
Incropera, 2006
Kreith, 2011
Loulou, 1999, Estimation of thermal contact resistance during the first stages of metal solidification process: I-experiment principle and modelisation, Int. J. Heat Mass Tran., 42, 2119, 10.1016/S0017-9310(98)00333-0
Mirbagheru, 2007, Modelling of metal-mold interface resistance in the A356 Aluminum alloy casting process, Commun. Numer. Methods Eng., 23, 295, 10.1002/cnm.903
Samarasekera, 1978, The continuous-casting, Int. Met. Rev., 236
Cheung, 2009, Interfacial heat transfer coefficients and solidification of an aluminum alloy in a rotary continuous caster, Int. J. Heat Mass Tran., 52, 451, 10.1016/j.ijheatmasstransfer.2008.07.003
Gale, 2003
Thermocalc Software: TCAL5, TCS Al-Based Alloy Database., (n.d.).
Callister, 2007
Silva, 2016, Solder/substrate interfacial thermal conductance and wetting angles of Bi–Ag solder alloys, J. Mater. Sci. Mater. Electron., 27, 1994, 10.1007/s10854-015-3983-2
Sayyadi, 2019, The role of intermetallic compounds in controlling the microstructural, physical and mechanical properties of Cu-[Sn-Ag-Cu-Bi]-Cu solder joints, Sci. Rep., 9, 1, 10.1038/s41598-019-44758-3