Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Đặc điểm giao diện, cấu trúc vi mô và tính chất cơ học của mối hàn chồng trượt ma sát giữa các hợp kim nhôm/magiê khác nhau: ảnh hưởng của hình dạng đầu chốt
Tóm tắt
Ba hình dạng đầu chốt khác nhau gồm hình trụ (C-tool), hình vuông (S-tool) và hình tam giác (T-tool) đã được thiết kế một cách sáng tạo, và ảnh hưởng của hình dạng đầu chốt đến cấu trúc vi mô giao diện và tính chất cơ học của các mối hàn chồng trượt ma sát (FSLW) đã được nghiên cứu. Các kết quả cho thấy rằng các đặc tính giao diện của các mối hàn FSLW được chế tạo bằng các hình dạng đầu chốt khác nhau có sự khác biệt rõ rệt. Sự di chuyển lên trên của hợp kim Mg tại giao diện của mối hàn S-tool và T-tool giảm đáng kể. Hơn nữa, hai lớp hợp chất liên kim loại (IMC) (Al3Mg2 và Al12Mg17) với độ dày khoảng 4,6 μm được hình thành ở đáy giao diện do C-tool. Tuy nhiên, chỉ có một lớp IMC liên tục và cấu trúc eutectic (Mg + Al12Mg17) được tạo ra ở phía nhôm của giao diện do S-tool, và giao diện của T-tool được cấu tạo bởi một lớp IMC không liên tục và cấu trúc eutectic. Tải trọng kéo-shear tối đa của các mối hàn được hàn bằng S-tool đạt được, đạt 5,95 KN. Vị trí gãy xảy ra dọc theo lớp cấu trúc eutectic ở phía nhôm.
Từ khóa
#hàn chồng trượt ma sát #mối hàn không đồng nhất #hợp kim Al/Mg #tính chất cơ học #cấu trúc vi mô #hình dạng đầu chốtTài liệu tham khảo
Meng XC, Huang YX, Cao J, Shen JJ, Santos JF (2021) Recent progress on control strategies for inherent issues in friction stir welding. Prog Materi Sci 115. https://doi.org/10.1016/j.pmatsci.2020.100706
Yao HN, Wen HY, Chen K, Jiang MY, Reddy KM, Kondoh K, Wang M, Hua XM, Shan AD (2021) Interfacial phases formed in friction stir lap welding high entropy alloy to Al alloy. Scripta Materialia 201. https://doi.org/10.1016/j.scriptamat.2021.113972
Huang YX, Meng XC, Xie YM, Wan L, Lv ZL, Cao J, Feng JC (2018) Friction stir welding/processing of polymers and polymer matrix composites. Compos Part A 105:235–257. https://doi.org/10.1016/j.compositesa.2017.12.005
Shen ZK, Ding YQ, Guo W, Hou WT, Liu XC, Chen HY, Liu FJ, Li WY, Gerlich A (2021) Refill friction stir spot welding Al alloy to copper via pure metallurgical joining mechanism. Chin J Mech Eng 34:75. https://doi.org/10.1186/s10033-021-00593-0
Mao YQ, Yang P, Ke LM, Xu Y, Chen YH (2021) Microstructure evolution and recrystallization behavior of friction stir welded thick Al–Mg–Zn–Cu alloys: influence of pin centerline deviation. Acta Metall Sin Eng. https://doi.org/10.1007/s40195-021-01307-0
Liu DJ, Xin RL, Zheng X, Zhou Z, Liu Q (2013) Microstructure and mechanical properties of friction stir welded dissimilar Mg alloys of ZK60-AZ31. Mater Sci Eng A 561(20):419–426. https://doi.org/10.1016/j.msea.2012.10.052
Xu Y, Ke LM, Mao YQ, Niu PL (2021) Interfacial microstructure evolution of thick plate Al/Mg FSW: effect of pin size. Mater Charact 174. https://doi.org/10.1016/j.matchar.2021.111022
Mclean AA, Powell GLF, Brown IH, Linton VM (2003) Friction stirs welding of magnesium alloy AZ31B to aluminium alloy 5083. Sci Technol Weld Join 8(6):462–464
Chen YC, Nakata K (2008) Friction stir lap joining aluminum and magnesium alloys. Scr Mater 58(6):433–436. https://doi.org/10.1016/j.scriptamat.2007.10.033
Liu JL, Niu SY, Ren R, Ji SD, Wang L, Lv Z (2019) Improving joint morphologies and tensile strength of Al/Mg dissimilar alloys friction stir lap welding by changing Zn interlayer thickness [J]. Acta Metall Sin Eng 32(11). https://doi.org/10.1007/s40195-019-00937-9
Niu SY, Ji SD, Yan DJ, Yan DJ, Meng XC, Xiong XH (2018) AZ31B/7075-T6 alloys friction stir lap welding with a zinc interlayer. J Mater Process Technol 263:82–90. https://doi.org/10.1016/j.jmatprotec.2018.08.009
Ji SD, Niu SY, Liu JG, Meng XC (2019) Friction stir lap welding of Al to Mg assisted by ultrasound and a Zn interlayer. J Mater Process Technol 267:141–151. https://doi.org/10.1016/j.jmatprotec.2018.12.010
Yue YM, Zhou ZL, Ji SD, Huang YX, Zhou ZL (2016) Effect of half-threaded pin on mechanical properties of friction stir lap welded alclad 2024 aluminum alloy. J Mater Sci Technol 32:671–675. https://doi.org/10.1016/j.jmst.2016.03.005
Jin YH, Huang ZY, Li CF, Wen Y, Wang XJ (2016) Migration interface of friction stir welding overlap joints with different tool geometries and rotation speeds. Chinese Journal of Rare Metals 40(5):467–472
Badarinarayan H, Shi Y, Li X, Okamoto K (2009) Effect of tool geometry on hook formation and static strength of friction stir spot welded aluminum 5754-O sheets. Int J Mach Tools Manuf 49(11):814–823. https://doi.org/10.1016/j.ijmachtools.2009.06.001
Yin YH, Sun N, North TH, Hu SS (2010) Hook formation and mechanical properties in AZ31 friction stir spot welds. J Mater Process Technol 210(14):2062–2070. https://doi.org/10.1016/j.jmatprotec.2010.07.029
Huang YX, Wan L, Meng XC, Xie YM, Lv ZL, Zhou L (2018) Probe shape design for eliminating the defects of friction stir lap welded dissimilar materials. J Manuf Process 35:420–427. https://doi.org/10.1016/j.jmapro.2018.08.026
Huang YX, Wan L, Si XQ, Huang TF, Meng XC, Xie YM (2019) Achieving high-quality Al/steel joint with ultrastrong interface. Metall Mater Trans A 50:295–299. https://doi.org/10.1007/s11661-018-5006-4
Mazzaferro CCP, Rosendo TS, Tier MAD, Mazzaferro JAE, Dos Santos JF, Strohaecker TR (2015) Microstructural and mechanical observations of galvanized trip steel after friction stir spot welding. Adv Manuf Process 30(9):1090–1103. https://doi.org/10.1080/10426914.2015.1004699
Mao YQ, Ke LM, Liu FC, Liu Q, Huang CP, Xing L (2014) Effect of tool pin eccentricity on microstructure and mechanical properties in friction stir welded 7075 aluminum alloy thick plate. Mater Des 62(62):334–343. https://doi.org/10.1016/j.matdes.2014.05.038
Rao HM, Ghaffari B, Yuan W, Jordonc JB, Badarinarayana H (2016) Effect of process parameters on microstructure and mechanical behaviors of friction stir linear welded aluminum to magnesium. Mater Sci Eng A 651:27–36. https://doi.org/10.1016/j.msea.2015.10.082
Rao HM, Yuan W, Badarinarayan H (2015) Effect of process parameters on mechanical properties of friction stir spot welded magnesium to aluminum alloys. Mater Des 66(2):235–245. https://doi.org/10.1016/j.matdes.2014.10.065
Fereiduni E, Movahedi M, Kokabi AH (2015) Aluminum/steel joints made by an alternative friction stir spot welding process. J Mater Process Technol 224:1–10. https://doi.org/10.1016/j.jmatprotec.2015.04.028
Sato SY, Park SHC, Michiuchi M, Kokawa H (2004) Constitutional liquation during dissimilar friction stir welding of Al and Mg alloys. Scr Mater 50(9):1233–1236. https://doi.org/10.1016/j.scriptamat.2004.02.002
Venkateswaran P, Reynolds AP (2012) Factors affecting the properties of friction stir welds between aluminum and magnesium alloys. Mater Sci Eng A 545(5):26–37. https://doi.org/10.1016/j.msea.2012.02.069
Chen Y, Wang H, Wang XY, Ding H, Zhao JW, Zhang FH, Ren ZH (2019) Influence of tool pin eccentricity on microstructural evolution and mechanical properties of friction stir processed Al-5052 alloy. Mater Sci Eng A 739:272–276. https://doi.org/10.1016/j.msea.2018.10.057
Liu W, Xiong JT, Zhao HX, Luan G (2018) Interface defects and mechanical properties in friction stir welded lap joint of thin aluminum alloy sheets. Transactions of the China Welding Institution 39(10):11–15
Fujii H, Cui L, Maeda M, Nogi K (2006) Effect of tool shape on mechanical properties and microstructure of friction stir welded aluminum alloys. Mater Sci Eng A 419:25–31. https://doi.org/10.1016/j.msea.2005.11.045
Elangovan K, Balasubramanian V. Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone in AA6061 aluminium alloy. Mater Des 29(2):362–373. https://doi.org/10.1016/j.matdes.2007.01.030
Ke LM, Pan JL, Xing L (2009) Sucking-extruding theory for the material flow in friction stir welds. J Mech Eng 45(4):89–94
Elangovan K, Balasubramanian V (2007) Influences of pin profile and rotational speed of the tool on the formation of friction stir processing zone in AA2219 aluminium alloy. Mater Sci Eng A 459(1–2):7–18. https://doi.org/10.1016/j.msea.2006.12.124
Schneider J, Brooke S, Nunes AC (2016) Material flow modification in a FSW through introduction of flats. Metall Mater Trans B 47(1):720–730. https://doi.org/10.1007/s11663-015-0523-7
Reza-E-Rabby M, Tang W, Reynolds AP (2017) Effects of thread interruptions on tool pins in friction stir welding of AA6061. Sci Technol Weld Join 23:114–124. https://doi.org/10.1080/13621718.2017.1341363
Nandan R, Roy GG, Lienert TJ, Debroy T (2007) Three-dimensional heat and material flow during friction stir welding of mild steel. Acta Mater 55(3):883–895. https://doi.org/10.1016/j.actamat.2006.09.009
Shi L, Wu CS, Liu HJ (2013) Analysis of heat transfer and material flow in reverse dual-rotation friction stir welding. Welding in the World 59(5):325–331. https://doi.org/10.1533/978-1-78242-164-1.325
Nandan R, DebRoy T, Bhadeshia HKDH (2008) Recent advances in friction-stir welding-process, weldment structure and properties. Prog Mater Sci 53:980–992. https://doi.org/10.1016/j.pmatsci.2008.05.001
Mehta M, Reddy GM, Rao AV, De A (2015) Numerical modeling of friction stir welding using the tools with polygonal pins. Def Technol 11(3):229–236. https://doi.org/10.1016/j.dt.2015.05.001