Phim Mono Bạc Gây Tăng Cường Tán Xạ Raman Tại Giao Diện Để Phát Hiện Enrofloxacin Không Tan Trong Nước

Plasmonics - Tập 16 - Trang 349-358 - 2020
Yuanjie Teng1, Zhenni Wang1, Zeyu Ren1, Yanping Qin2, Zaifa Pan3, Kang Shao3, Yuanbin She3, Weihao Huang1
1State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
2Changxing County Center for Disease Control and Prevention, Changxing, China
3College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China

Tóm tắt

Các phân tử không tan trong nước thường cho tín hiệu tán xạ Raman tăng cường bề mặt (SERS) kém, vì chúng khó được hấp phụ trên bề mặt của các chất nền SERS thường được sử dụng, chẳng hạn như keo bạc (Ag) hoặc vàng (Au) trong môi trường nước. Trong nghiên cứu này, một chất nền SERS phim mono bạc (Ag MLF) nhạy cảm và có khả năng tái tạo cao được chế tạo bằng phương pháp tự lắp ghép các hạt nano bạc (Ag NPs) trên giao diện nước/dầu có thể thực hiện việc phát hiện enrofloxacin không tan trong nước ở nồng độ vết. Chất xúc tác chuyển pha mang tải dương có thể chuyển các hạt nano bạc mang tải âm trong dung dịch nước tới giao diện nước/dầu. Đồng thời, enrofloxacin không tan trong nước cũng có thể bị thu hút tới giao diện nhờ vào nhóm ưa mỡ của nó. Loại/thể tích của pha dầu, chất xúc tác chuyển pha và thời gian khuấy xoáy đã được tối ưu hóa để tối đa hóa hiệu ứng SERS của Ag MLF. Kết quả cho thấy enrofloxacin không tan trong nước ở nồng độ vết có thể được nhận diện bởi Ag MLF và độ nhạy phát hiện của nó đã được cải thiện đáng kể. Ag MLF mới được đề xuất có thể được áp dụng để phát hiện các phân tử không tan trong nước khác trong SERS.

Từ khóa

#Phim bạc đơn lớp #Tán xạ Raman tăng cường bề mặt #Enrofloxacin không tan trong nước #Hạt nano bạc #Chất xúc tác chuyển pha

Tài liệu tham khảo

Langer J, Jimenez De Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B, Baumberg JJ, Bazan GC, Bell SEJ, Boisen A, Brolo AG, Choo J, Cialla-May D, Deckert V, Fabris L, Faulds K, García De Abajo FJ, Goodacre R, Graham D, Haes AJ, Haynes CL, Huck C, Itoh T, Käll M, Kneipp J, Kotov NA, Kuang H, Le Ru EC, Lee HK, Li J, Ling XY, Maier SA, Mayerhöfer T, Moskovits M, Murakoshi K, Nam J, Nie S, Ozaki Y, Pastoriza-Santos I, Perez-Juste J, Popp J, Pucci A, Reich S, Ren B, Schatz GC, Shegai T, Schlücker S, Tay L, Thomas KG, Tian Z, Van Duyne RP, Vo-Dinh T, Wang Y, Willets KA, Xu C, Xu H, Xu Y, Yamamoto YS, Zhao B, Liz-Marzán LM (2019) Present and future of surface-enhanced Raman scattering. ACS Nano:28–117 Liu G, Zheng H, Lu J (2017) Recent progress and perspective of trace antibiotics detection in aquatic environment by surface-enhanced Raman spectroscopy. Trends Environ Anal Chem 16:16–23 Li M, Cushing SK, Liang H, Suri S, Ma D, Wu N (2013) Plasmonic nanorice antenna on triangle nanoarray for surface-enhanced Raman scattering detection of hepatitis B virus DNA. Anal Chem 85:2072–2078 Kalishwaralal K, Deepak V, Pandian SBRK, Kottaisamy M, Barathmanikanth S, Kartikeyan B, Gurunathan S (2010) Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf B: Biointerfaces 77:257–262 Qiang F, Zhang DG, Chen YK, Wang XX, Lu H, Zhu LF, Pei W, Hai M (2013) Surface enhanced Raman scattering arising from plasmonic interaction between silver nano-cubes and a silver grating. Appl Phys Lett 103:41122 Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS, Fan FR, Zhang W, Zhou ZY, Wu DY, Ren B, Wang ZL, Tian ZQ (2010) Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464:392–395 Liu JW, Zhang SY, Qi H, Wen WC, Yu SH (2012) A general strategy for self-assembly of nanosized building blocks on liquid/liquid interfaces. Small 8:2412–2420 Yang G, Hallinan DT (2016) Gold nanoparticle monolayers from sequential interfacial ligand exchange and migration in a three-phase system. Sci Rep 6:35339 Ma YM, Liu HL, Mao M, Meng J, Yang LB, Liu JH (2016) Surface-enhanced Raman spectroscopy on liquid interfacial nanoparticle arrays for multiplex detecting drugs in urine. Anal Chem 88:8145–8151 Gadogbe M, Ansar SM, Chu I, Zou SL, Zhang DM (2014) Comparative study of the self-assembly of gold and silver nanoparticles onto thiophene oil. Langmuir 30:11520–11527 Ciesa F, Plech A (2010) Gold nanoparticle membranes as large-area surface monolayers. J Colloid Interface Sci 346:1–7 Zhang SY, Liu JW, Zhang CL, Yu SH (2013) Co-assembled thin films of Ag nanowires and functional nanoparticles at the liquid-liquid interface by shaking. Nanoscale 5:4223–4229 Park Y, Yoo S, Park S (2007) Assembly of highly ordered nanoparticle monolayers at a water/hexane interface. Langmuir 23:10505–10510 Reincke F, Hickey S, Kegel W, Vanmaekelbergh D (2004) Spontaneous assembly of a monolayer of charged gold nanocrystals at the water/oil interface. Angew Chem Int Ed 43:458–462 Wu Y, Yu W, Yang B, Li P (2018) Self-assembled two-dimensional gold nanoparticle film for sensitive nontargeted analysis of food additives with surface-enhanced Raman spectroscopy. Analyst 143:2363–2368 Liu J, Li J, Li F, Zhou Y, Hu X, Xu T, Xu W (2018) Liquid–liquid interfacial self-assembled Au NP arrays for the rapid and sensitive detection of butyl benzyl phthalate (BBP) by surface-enhanced Raman spectroscopy. Anal Bioanal Chem 410:5277–5285 Teng Y, Zhang Y, Ren Z, Wang Z, Liu W, Shao K, Pan Z (2019) Rapid water/oil interfacial self-assembled au monolayer nanofilm by simple vortex for surface-enhanced Raman scattering. New J Chem 43:7613–7619 Xu L, Han G, Hu J, He Y, Pan J, Li Y, Xiang J (2009) Hydrophobic coating- and surface active solvent-mediated self-assembly of charged gold and silver nanoparticles at water-air and water-oil interfaces. Phys Chem Chem Phys 11:6490–6497 Ali M, Ghosh SK (2015) Liquid—liquid interface-mediated Au—ZnO composite membrane using ‘thiol-ene’ click chemistry. Mater Res Express 2:75010 Luo K, Xiang Y, Wang H, Xiang L, Luo Z (2016) Multiple-Sized amphiphilic janus gold nanoparticles by ligand exchange at Toluene/Water interface. J Mater Sci Technol 32:733–737 Liu S, Li Y, Wang Y, Liu X, Yeung ES (2013) Two-dimensional self-assembly of hydrophobic nanoparticles at oil/water interfaces via nanoscale phase separation of mixed ligands. J Colloid Interface Sci 407:243–249 Kumar A, Mandal S, Mathew SP, Selvakannan PR, Mandale AB, Chaudhari RV, Sastry M (2002) Benzene- and anthracene-mediated assembly of gold nanoparticles at the liquid−liquid interface. Langmuir 18:6478–6483 Zhao H, Hasi W, Bao L, Liu Y, Han S, Lin D (2018) A silver self-assembled monolayer-decorated polydimethylsiloxane flexible substrate for in situ SERS detection of low-abundance molecules. J Raman Spectrosc 49:1469–1477 Konrad MP, Doherty AP, Bell SEJ (2013) Stable and uniform SERS signals from self-assembled two-dimensional interfacial arrays of optically coupled Ag nanoparticles. Anal Chem 85:6783–6789 Yao K, Zhao H, Wang N, Li T, Zhao S, Lu W (2019) Facile synthesis of ultra-large, single-crystal Ag nanosheet-assembled films at chloroform-water interface. J Solid State Chem 278:120912 Bian Z, Xiang Y, Hu C, Luo Z, Luo K (2017) Preparation of Janus Ag nanoparticles by liquid/liquid interfacial reaction. IOP Conf Mater Sci Eng 242:012005 Xu Y, Konrad MP, Lee WWY, Ye Z, Bell SEJ (2016) A method for promoting assembly of metallic and non-metallic nanoparticles into interfacial monolayer films. Nano Lett 16:5255–5260 Martinez M, McDermott P, Walker R (2006) Pharmacology of the fluoroquinolones: A perspective for the use in domestic animals. Vet J 172:10–28 Sun L, Zhang H, Du YP (2018) Preparation of surface enhanced Raman scattering substrates based on SBA-15 material and the detection of enrofloxacin in chicken and chicken feed. Chem J Chin Univ Chin 39:455–462 Xu Y, Du YP, Li QQ, Wang X, Pan YC, Zhang H, Wu T, Hu HL (2014) Ultrasensitive detection of enrofloxacin in chicken muscles by surface-enhanced Raman spectroscopy using amino-modified glycidyl methacrylate-ethylene dimethacrylate (GMA-EDMA) powdered porous material. Food Anal Methods 7:1219–1228 Lee PC, Melsel D (1982) Adsorption and Surface-Enhanced Raman of dyes on silver and gold sols1. J Phys Chem 86:3391–3395 Analysis of fourteen quinolones in food of animal origin by high performance liquid chromatography tandem mass spectrometry, GB/T 21312-2007 (2007) Chen JM, Guo LH, Qiu B, Lin ZY, Wang T (2018) Application of ordered nanoparticle self-assemblies in surface-enhanced spectroscopy. Mater Chem Front 2:835–860 Le Ru EC, Dalley M, Etchegoin PG (2006) Plasmon resonances of silver colloids studied by surface enhanced Raman spectroscopy. Curr Appl Phys 6:411–414 Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106 Zhang YY, Huang YQ, Zhai FL, Du R, Liu YD, Lai KQ (2012) Analyses of enrofloxacin, furazolidone and malachite green in fish products with surface-enhanced Raman spectroscopy. Food Chem 135:845–850 Tang YZ, Chen X, Lv Y, Wu ZY, Chen F, Chen ZG (2018) Excellent surface enhanced Raman scattering of SiO2 fiber membrane embedded with Ag nanoparticles. J Inorg Organomet Polym Mater 28:251–257 Kauffman GW, Jurs PC (2010) Prediction of surface tension, viscosity, and thermal conductivity for common organic solvents using quantitative structure−property relationships. Cheminform 32:408–418