Interestingness of association rules in data mining: Issues relevant to e-commerce

Sādhanā - 2005
Rajesh Natarajan1, B. H. Shekar2
1IT & Systems Group, Indian Institute of Management Lucknow (IIML), Lucknow, India
2Quantitative Methods and Information Systems (QMIS) Area, Indian Institute of Management Bangalore (IIMB), Bangalore, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adomavicius G, Tuzhilin A 2001 Expertdriven validation of rulebased user models in personalization applications.Data Mining Knowledge Discovery 5(1/2): 33–58

Adomavicius G, Tuzhilin A 1997 Discovery of actionable patterns in databases: the action hierarchy approach.Proc. Third Int. Conf. on Data Mining and Knowledge Discovery (KDD 1997) (Meulo Park, CA: AAAI Press) pp 111–114

Aggarwal C C, Yu P S 2001 Mining associations with the collective strength approach.IEEE Trans. Knowledge Data Eng. 13: 863–873

Agrawal R, Imielinski T, Swami A 1993 Mining association rules between sets of items in large databases.Proc. 1993 ACM SIGMOD Int. Conf. on Management of Data (Washington, DC: ACM Press) pp 207–216

Anderberg M R 1973Cluster analysis for applications (New York: Academic Press)

Ansari S, Kohavi R, Mason L, Zhang Z 2000 Integrating e-commerce and data mining: Architecture and challenges.Proc. WEBKDD '2000 Workshop: Web mining for e-commerce Challenges and Opportunities; http://ai.stanford.edu/~ronnykAVEBKDD2000/index.html

Baesens B, Viaene S, Vanthienen J 2000 Post-processing of association rules.Proc. Workshop on Post-Processing in Machine Learning and Data Mining: Interpretation, visualization, integration, and related topics with inSixth ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD 2000) Boston, MA, pp 20–23, http://www.cas.mcmaster.ca/~bruha/kdd2000/kddrep.html

Baeza-Yates R, Ribeiro-Neto B 1999Modern information retrieval (Reading, MA: Addison Wesley)

BayardoJr R J, Agrawal R, Gunopulos D 2000 Constraint-based rule mining in large, dense databases.Data Mining Knowledge Discovery 4(2/3): 217–240

Brieman L, Friedman J H, Olshen R, Stone C 1984Classification and regression trees (Belmont, CA: Wadsworth)

Brin S, Motwani R, Silverstein C 1997a Beyond market baskets: Generalizing association rules to correlations.Proc. ACM SIGMOD Conf. (New York: ACM Press) pp 265–276

Brin S, Motwani R, Ullman J D, Tsur S 1997b Dynamic itemset counting and implication rules for market basket data.Proc. ACM SIGMOD Conf. (New York: ACM Press) pp 255–264

Burt S, Sparks L 2003 e-Commerce and the retail process: A review.J. Retailing Customer Services 10: 275–286

Cristofer L, Simovici D 2002 Generating an informative cover for association rules.Proc. 2002 IEEE Int. Conf. on Data Mining (ICDM 2002) (Washington, DC: IEEE Comput. Soc. Press) pp 597–600

Deo N 1989Graph theory with applications to engineering and computer science. (New Delhi: Prentice Hall of India)

Fayyad U, Uthurusamy R 2002 Evolving data mining into solutions for insights.Commun. ACM 45(8): 28–31

Fayyad U M, Piatetsky-Shapiro G, Smyth P 1996 From data mining to knowledge discovery: An overview. InAdvances in knowledge discovery and data mining (eds) U M Fayyad, G Piatetsky-Shapiro, P Smyth, R Uthurusamy (AAAI/MIT Press) pp 1–34

Freitas A A 1998 On objective measures of rule surprisingness. Proc.Second European Symposium on Principles of Data Mining and Knowledge Discovery, (PKDD-98), Lecture Notes in Artificial Intelligence. (LNAI 1510), (Springer-Verlag) pp 1–9

Freitas A A 1999 On rule interestingness measures.Knowledge-Based Syst. 12: 309–315

Geoffrion A M, Krishnan R 2003a e-Business and management science: Mutual impacts (Part 1).Manage. Sci. 49: 1275–1286.

Geoffrion A M, Krishnan R 2003b e-Business and management science: Mutual impacts (Part 2).Manage. Sci. 49: 1445–1456

Geyer-Schulz A, Hahsler M 2002 Comparing two recommender algorithms with the help of recom mendations by peers. InWEBKDD 2002 — Mining web data for discovering usage patterns and profiles: 4th Int. Workshop, (eds) O R Zaiane, J Srivastava, M Spiliopoulou, B Masand (Revised Papers) Lecture Notes in Computer Science LNAI 2703 (Berlin: Springer-Verlag) pp 137–158

Grabmeier J, Rudolph A 2002 Techniques of cluster algorithms in data mining.Data Mining Knowledge Discovery 6: 303–360

Gupta G K, Strehl A, Ghosh J 1999 Distance based clustering of association rules.Proc. Intelligent Engineering Systems through Artificial Neural Networks (ANNIE 1999) (St. Louis, MO: ASME Press) vol. 9, pp 759–764

Hilderman R J, Hamilton H J 1999 Knowledge discovery and interestingness measures: A survey. Technical Report, Department of Computer Science, University of Regina, Canada

Hilderman R J, Li L, Hamilton H J 2002 Visualizing data mining results with domain generalization graphs. InInformation visualization in data mining and knowledge discovery (eds) U M Fayyad, G G Grinstein, A Wierse Andreas (San Franscisco, CA: Morgan Kaufman) pp 251–270

Hussain F, Liu H, Suzuki E, Lu H 2000 Exception rule mining with a relative interestingness measure.Proc. Pacific Asia Conf. on Knowledge Discovery in Databases (PAKDD 2000) (London: Springer Verlag) pp 86–97

Jain A K, Murty M N, Flynn P J 1999 Data clustering: A review.ACM Comput. Surv. 31(3): 264–323

Jeh G, Widom J 2002 SimRank: A measure of structural-context similarity.Proc. 8th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, KDD-2002

Jorge A 2004 Hierarchical clustering for thematic browsing and summarization of large sets of association rules.Proc. 2004 SIAM Int. Conf. on Data Mining (SDM 2004) (SIAM Press)

Kalakota R, Whinston A B 1999Frontiers of electronic commerce (Singapore: Addison Wesley/Longman)

Kaufman L, Rousseeuw P J 1990Finding groups in data: An introduction to cluster analysis (New York: Wiley)

Klemettinen M, Mannila H, Ronkainen P, Toivonen H, Verkamo I A 1994 Finding interesting rules from large sets of discovered association rules.Proc. Third Int. Conf. on Information and Knowledge Management (CIKM 1994) (ACM Press) pp 401–407

Kohavi R, Provost F 2001 Applications of data mining to electronic commerce.Data Mining Knowledge Discovery 5(1/2): 5–10

Korn F, Labrinidis A, Kotidis Y, Faloutos C 1998 Ratio rules: A new paradigm for fast, quantifiable data mining.Proc. 24th Int. Conf. on Very Large Databases (VLDB 1998) (New York: Morgan Kaufmann) pp 582–593

Lee J, Podlaseck M, Schonberg E, Hoch R 2001 Visualization and analysis of clickstream data of online stores for understanding web merchandising.Data Mining Knowledge Discovery 5(1/2): 59–84

Liu B, Hsu W, Mun L, Lee H 1999 Finding interesting patterns using user expectations.IEEE Trans. Knowledge Data Eng. 11: 817–832

Liu B, Hu M, Hsu W 2000 Multilevel organization and summarization of the discovered rules.Proc. ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD 2000) (Boston: ACM Press) pp 208–217

Lu H, Feng L, Han J 2000 Beyond intratransaction association analysis: Mining multidimensional intertransaction association rules.ACM Trans. Inf. Syst. 18(4): 423–454

Major J A, Mangano J J 1995 Selecting among rules induced from a hurricane database.J. Intell. Inf. Syst. 4: 39–52

Matheus C, Piatetsky-Shapiro G, McNeill D 1996 Selecting and reporting what is interesting: The KEFIR application to healthcare data. InAdvances in knowledge discovery and data mining (eds) U M Fayyad, G Piatetsky-Shapiro, P Smyth, R Uthurusamy (Menlo Park, CA: AAAI/MIT Press) pp 495–516

Meo R 2000 Theory of dependence values.ACM Trans. Database Syst. 25: 380–406

Murthi B P S, Sarkar S 2003 The role of the management sciences in research on personalization.Manage. Sci. 49: 1344–1362

Ozden B, Sridhar R, Silberschatz A 1998 Cyclic association rules.Proc. Fourteenth Int. Conf. on Data Engineering (ICDE 1998) (Washington, DC: IEEE Comput. Soc. Press) pp 412–421

Padmanabhan B, Tuzhilin A 1999 Unexpectedness as a measure of interestingness in knowledge discovery,decision support syst. 27: 303–318

Page L, Brin S, Motwani R, Winograd T 1998 The PageRank citation ranking: Bringing order to the web. Technical report, Stanford University Database Group. http//citeseer.nj.nec.com/368196.html

Piatetsky-Shapiro G, Steingold S 2000 Measuring lift quality in database marketing.ACM SIGKDD Explorations Newslett. 2(2): 76–80

Quinlan J 1993C4.5: Programs for machine learning (New York: Morgan Kaufmann)

Ram A 1990 Knowledge goals: A theory of interestingness.Proc. 12th Annual Conf. of the Cognitive Science Society, Cambridge, MA

Resnick P, Varian H R 1997 Recommender systems.Commun. ACM 40(3): 56–58

Roddick J F, Rice S 2001 What's interesting about cricket? — On thresholds and anticipation in discovered rules.ACM SIGKDD Explorations Newslett. 3(1): 1–5

Sahar S 1999 Interestingness via what is not interesting.Proc. ACM Conf. on Data Mining (KDD-99) (San Diego, CA: ACM Press) pp 332–336

Sahar S 2002 Exploring interestingness through clustering: A framework.Proc. IEEE Int. Conf. on Data Mining (ICDM 2002) (Washington, DC: IEEE Comput. Soc. Press) pp 677–680

Sarwar B, Karypis G, Konstan J, Riedl J 2000 Analysis of recommendation algorithms for e-commerce.Proc. e-Commerce 2000 (New York: ACM Press) pp 158–167

Savasere A, Omiecinski E, Navathe S 1998 Mining for strong negative associations in a large database of customer transactions.Proc. Fourteenth Int. Conf. on Data Engineering (ICDE 1998) (Washington, DC: IEEE Comput. Soc. Press) pp 494–502

Schāfer J B, Konstan J A, Riedl J 2001 e-Commerce recommendation applications.Data Mining Knowledge Discovery 5(1/2): 115–153

Shekar B, Natarajan R 2004a A framework for evaluating knowledgebased interestingness of association rules.Fuzzy Optim. Decision Making 3(2): 157–185

Shekar B, Natarajan R 2004b A transactionbased neighbourhooddriven approach to quantifying interestingness of association rules.Proc. Fourth IEEE Int. Conf. on Data Mining (ICDM 2004) (Washington, DC: IEEE Comput. Soc. Press) pp 194–201

Silberschatz A, Tuzhilin A 1996 What makes patterns interesting in knowledge discovery systems.IEEE Trans. Knowledge Data Eng. 8: 970–974

Srikant R, Agrawal R 1995 Mining generalized association rules.Proc. 21st Int. Conf. on Very Large Databases (VLDB 1995) (New York: Morgan Kaufmann)

Subramanian D K, Ananthanarayana V S, Narasimha Murty M 2003 Knowledge-based association rule mining using AND-OR taxonomies.Knowledge-Based Syst. 16: 37–45

Tan P, Kumar V, Srivastava J 2004 Selecting the right interestingness measure for association patterns.Inf. Syst. 29(4): 293–331

Teng W, Hsieh M, Chen M 2002 On the mining of substitution rules for statistically dependent items.Proc. IEEE Int. Conf. on Data Mining (ICDM 2002) (Washington, DC: IEEE Comput. Soc. Press) pp 442–449

Toivonen H, Klemettinen M, Ronkainen P, Hatonen K, Mannila H 1995 Pruning and grouping discovered association rules.Proc. Mlnet Workshop on Statistics, Machine Learning and Knowledge Discovery in Databases, Herakhion, Crete, Greece

Wang K, Tay Soon H W, Liu B 1998 Interestingness-based interval merger for numeric association rules.Proc. 4th Int. Conf. on Data Mining and Knowledge Discovery (KDD 98) (New York: AAAI Press) pp 121–128

Zaki M J 2000 Generating non-redundant association rules.Proc. 6th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD 2000) (New York: ACM Press) pp 34–43