Interconnecting layers for tandem organic solar cells

Materials Today Energy - Tập 21 - Trang 100707 - 2021
C.H.Y. Ho1, J. Kothari1, X. Fu2, F. So2
1Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695, USA
2Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA

Tài liệu tham khảo

Tsao, 2006, vol. 13 Darling, 2013, The case for organic photovoltaics, RSC Adv., 3, 17633, 10.1039/c3ra42989j Kang, 2016, Bulk-heterojunction organic solar cells: five core technologies for their commercialization, Adv. Mater., 28, 7821, 10.1002/adma.201601197 Liu, 2020, 18% Efficiency organic solar cells, Sci. Bull., 65, 272, 10.1016/j.scib.2020.01.001 Lin, 2020, self-assembled monolayer enables HTL-free organic solar cells with 18% efficiency and improved operational stability, ACS Energy Letters, 10.1021/acsenergylett.0c01421 Yin, 2020, Recent progress of all-polymer solar cells–From chemical structure and device physics to photovoltaic performance, Mater. Sci. Eng. R Rep., 140, 100542, 10.1016/j.mser.2019.100542 Yin, 2019, Observing electron transport and percolation in selected bulk heterojunctions bearing fullerene derivatives, non-fullerene small molecules, and polymeric acceptors, Nanomater. Energy, 64, 103950, 10.1016/j.nanoen.2019.103950 Meng, 2018, Organic and solution-processed tandem solar cells with 17.3% efficiency, Science, 361, 1094, 10.1126/science.aat2612 Chen, 2009, Construction and characteristics of tandem organic solar cells featuring small molecule-based films on polymer-based subcells, J. Phys. D Appl. Phys., 43 Cheyns, 2010, Organic tandem solar cells with complementary absorbing layers and a high open-circuit voltage, Appl. Phys. Lett., 97, 150, 10.1063/1.3464169 Sakai, 2010, Efficient organic photovoltaic tandem cells with novel transparent conductive oxide interlayer and poly (3-hexylthiophene): fullerene active layers, Sol. Energy Mater. Sol. Cells, 94, 376, 10.1016/j.solmat.2009.08.008 Taima, 2010, Tandem organic photovoltaic cells based on low-molecular-weight semiconductors, Jpn. J. Appl. Phys., 49, 10.1143/JJAP.49.01AC04 Lee, 2011, Transparent electrode with ZnO nanoparticles in tandem organic solar cells, Sol. Energy Mater. Sol. Cells, 95, 365, 10.1016/j.solmat.2010.04.020 Pattnaik, 2012, Novel hybrid amorphous/organic tandem junction solar cell, IEEE J. Photovoltaics, 3, 295, 10.1109/JPHOTOV.2012.2212700 Puetz, 2012, Solution processable, precursor based zinc oxide buffer layers for 4.5% efficient organic tandem solar cells, Org. Electron., 13, 2696, 10.1016/j.orgel.2012.07.043 Yang, 2012, Organic tandem solar cell using active inter-connecting layer, Org. Electron., 13, 1018, 10.1016/j.orgel.2012.02.015 Zou, 2012, Very high open-circuit voltage of 5.89 V in organic solar cells with 10-fold-tandem structure, Appl. Phys. Lett., 100, 126, 10.1063/1.4729009 bin Mohd Yusoff, 2013, Extremely stable all solution processed organic tandem solar cells with TiO 2/GO recombination layer under continuous light illumination, Nanoscale, 5, 11051, 10.1039/c3nr03068g Ishiyama, 2013, Tandem organic solar cells formed in co-deposited films by doping, Org. Electron., 14, 1793, 10.1016/j.orgel.2013.04.003 Jo, 2013, Enhanced efficiency of single and tandem organic solar cells incorporating a diketopyrrolopyrrole-based low-bandgap polymer by utilizing combined ZnO/polyelectrolyte electron-transport layers, Adv. Mater., 25, 4783, 10.1002/adma.201301288 Kim, 2013, High open circuit voltage solution-processed tandem organic photovoltaic cells employing a bottom cell using a new medium band gap semiconducting polymer, Chem. Mater., 25, 2722, 10.1021/cm401527b Li, 2013, Development of large band-gap conjugated copolymers for efficient regular single and tandem organic solar cells, J. Am. Chem. Soc., 135, 13549, 10.1021/ja406220a Li, 2013, Towards 15% energy conversion efficiency: a systematic study of the solution-processed organic tandem solar cells based on commercially available materials, Energy Environ. Sci., 6, 3407, 10.1039/c3ee42307g New, 2013, Small molecule tandem organic photovoltaic cells incorporating an α-NPD optical spacer layer, Org. Electron., 14, 2353, 10.1016/j.orgel.2013.05.037 Che, 2014, High-efficiency, vacuum-deposited, small-molecule organic tandem and triple-junction photovoltaic cells, Adv. Energy Mater., 4, 1400568, 10.1002/aenm.201400568 Jin, 2014, Highly efficient organic tandem solar cell based on SubPc: C70 bulk heterojunction, Org. Electron., 15, 3756, 10.1016/j.orgel.2014.10.019 Kim, 2014, Effect of π-conjugated bridges of TPD-based medium bandgap conjugated copolymers for efficient tandem organic photovoltaic cells, Energy Environ. Sci., 7, 4118, 10.1039/C4EE02318H Kim, 2014, Fluorinated benzoselenadiazole-based low-band-gap polymers for high efficiency inverted single and tandem organic photovoltaic cells, Macromolecules, 47, 1613, 10.1021/ma4026493 Kim, 2014, Thieno [3, 2-b] thiophene-substituted benzo [1, 2-b: 4, 5-b′] dithiophene as a promising building block for low bandgap semiconducting polymers for high-performance single and tandem organic photovoltaic cells, Chem. Mater., 26, 1234, 10.1021/cm4035903 Lechene, 2014, Design of intermediate layers for solution-processed tandem organic solar cells: guidelines from a case study on TiOx and ZnO, Sol. Energy Mater. Sol. Cells, 120, 709, 10.1016/j.solmat.2013.08.032 Li, 2014, A universal method to form the equivalent ohmic contact for efficient solution-processed organic tandem solar cells, J. Mater. Chem., 2, 14896, 10.1039/C4TA03182B Qin, 2014, High efficiency organic/a-Si hybrid tandem solar cells with complementary light absorption, J. Mater. Chem., 2, 15303, 10.1039/C4TA02690J Shim, 2014, Correlation of the electronic structure of an interconnection unit with the device performance of tandem organic solar cells, J. Mater. Chem., 2, 5450, 10.1039/C3TA14628F Spyropoulos, 2014, Flexible organic tandem solar modules with 6% efficiency: combining roll-to-roll compatible processing with high geometric fill factors, Energy Environ. Sci., 7, 3284, 10.1039/C4EE02003K Zuo, 2014, Microcavity-enhanced light-trapping for highly efficient organic parallel tandem solar cells, Adv. Mater., 26, 6778, 10.1002/adma.201402782 Bahro, 2015, Understanding the external quantum efficiency of organic homo-tandem solar cells utilizing a three-terminal device architecture, Adv Energy Mater, 5, 1501019, 10.1002/aenm.201501019 bin Mohd Yusoff, 2015, A high efficiency solution processed polymer inverted triple-junction solar cell exhibiting a power conversion efficiency of 11.83%, Energy Environ. Sci., 8, 303, 10.1039/C4EE03048F Guo, 2015, Fully printed organic tandem solar cells using solution-processed silver nanowires and opaque silver as charge collecting electrodes, Energy Environ. Sci., 8, 1690, 10.1039/C5EE00184F Kim, 2015, Controlling the morphology of BDTT-DPP-based small molecules via end-group functionalization for highly efficient single and tandem organic photovoltaic cells, ACS Appl. Mater. Interfaces, 7, 23866, 10.1021/acsami.5b05248 Lee, 2015, Polymer/small-molecule parallel tandem organic solar cells based on MoOx–Ag–MoOx intermediate electrodes, Sol. Energy Mater. Sol. Cells, 137, 34, 10.1016/j.solmat.2015.01.012 Lu, 2015, A new interconnecting layer of metal oxide/dipole layer/metal oxide for efficient tandem organic solar cells, Adv. Energy Mater., 5, 1500631, 10.1002/aenm.201500631 Shim, 2015, Efficient vacuum-deposited tandem organic solar cells with fill factors higher than single-junction subcells, Adv. Energy Mater., 5, 1500228, 10.1002/aenm.201500228 Tong, 2015, Vacuum-free and metal electrode-free organic tandem solar cells, Appl. Phys. Lett., 106, 10.1063/1.4907864 Torabi, 2015, Development of a silver/polymer nanocomposite interconnection layer for organic tandem solar cells, J. Nanophotonics, 9 Wang, 2015, Enhanced fill factor of tandem organic solar cells incorporating a diketopyrrolopyrrole-based low-bandgap polymer and optimized interlayer, ChemSusChem, 8, 331, 10.1002/cssc.201402833 Gao, 2016, Highly efficient organic tandem solar cell with a SubPc interlayer based on TAPC: C 70 bulk heterojunction, Sci. Rep., 6, 23916, 10.1038/srep23916 Liu, 2016, Nonfullerene tandem organic solar cells with high open-circuit voltage of 1.97 V, Adv. Mater., 28, 9729, 10.1002/adma.201603518 Lu, 2016, The incorporation of thermionic emission and work function tuning layer into intermediate connecting layer for high performance tandem organic solar cells, Nanomater. Energy, 21, 123, 10.1016/j.nanoen.2016.01.002 Prosa, 2016, Efficient and versatile interconnection layer by solvent treatment of PEDOT: PSS interlayer for air-processed organic tandem solar cells, Advanced Materials Interfaces, 3, 1600770, 10.1002/admi.201600770 Zheng, 2016, Effect of 3, 4, 9, 10-perylenetetracarboxylic bisbenzimidazole (PTCBI) as well as bathocuproine (BCP) and Ag interlayer thickness on the performance of organic tandem solar cells, Synth. Met., 221, 179, 10.1016/j.synthmet.2016.09.001 Chang, 2017, High-efficiency organic tandem solar cells with effective transition metal chelates interconnecting layer, Solar RRL, 1, 1700139, 10.1002/solr.201700139 Chen, 2017, An all-solution processed recombination layer with mild post-treatment enabling efficient Homo-tandem non-fullerene organic solar cells, Adv. Mater., 29, 1604231, 10.1002/adma.201604231 Cui, 2017, Fine-tuned photoactive and interconnection layers for achieving over 13% efficiency in a fullerene-free tandem organic solar cell, J. Am. Chem. Soc., 139, 7302, 10.1021/jacs.7b01493 Ho, 2017, Solution-processed transparent intermediate layer for organic tandem solar cell using nitrogen-doped graphene quantum dots, J. Nanosci. Nanotechnol., 17, 5686, 10.1166/jnn.2017.14138 Ka, 2017, Hybrid organic tandem solar cell comprising small-molecule bottom and polymer: fullerene top subcells fabricated by thin-film transfer, Sci. Rep., 7, 1, 10.1038/s41598-017-02181-6 Li, 2017, Solution-processed organic tandem solar cells with power conversion efficiencies> 12%, Nat. Photonics, 11, 85, 10.1038/nphoton.2016.240 Lu, 2017, A switchable interconnecting layer for high performance tandem organic solar cell, Adv. Energy Mater., 7, 1701164, 10.1002/aenm.201701164 Mao, 2017, Flexible large-area organic tandem solar cells with high defect tolerance and device yield, J. Mater. Chem., 5, 3186, 10.1039/C6TA10106B Qin, 2017, Achieving 12.8% efficiency by simultaneously improving open-circuit voltage and short-circuit current density in tandem organic solar cells, Adv. Mater., 29, 1606340, 10.1002/adma.201606340 Raïssi, 2017, Solution processed cathode and interconnecting layer of silver nanowires in an efficient inverted tandem organic solar cells, Sol. Energy Mater. Sol. Cells, 160, 494, 10.1016/j.solmat.2016.11.010 Yang, 2017, An efficient and thermally stable interconnecting layer for tandem organic solar cells, Sol. Energy, 155, 552, 10.1016/j.solener.2017.06.054 Zuo, 2017, High-efficiency nonfullerene organic solar cells with a parallel tandem configuration, Adv. Mater., 29, 1702547, 10.1002/adma.201702547 Becker, 2018, All-oxide MoOx/SnOx charge recombination interconnects for inverted organic tandem solar cells, Adv. Energy Mater., 8, 1702533, 10.1002/aenm.201702533 Chen, 2018, A nonfullerene semitransparent tandem organic solar cell with 10.5% power conversion efficiency, Adv. Energy Mater., 8, 1800529, 10.1002/aenm.201800529 Glaser, 2018, Rapid experimental optimization of organic tandem solar cells: 200 absorber layer thickness combinations on a 4× 4 cm 2 substrate, J. Mater. Chem., 6, 9257, 10.1039/C8TA00590G Guo, 2018, Exceeding 14% efficiency for solution-processed tandem organic solar cells combining fullerene-and nonfullerene-based subcells with complementary absorption, ACS Energy Letters, 3, 2566, 10.1021/acsenergylett.8b01448 Lee, 2018, Homo-tandem structures to achieve the ideal external quantum efficiency in small molecular organic solar cells, Opt Express, 26, A697, 10.1364/OE.26.00A697 Mayer, 2018, Optical enhancement of a printed organic tandem solar cell using diffractive nanostructures, Opt Express, 26, A240, 10.1364/OE.26.00A240 Zhang, 2018, Highly efficient tandem organic solar cell enabled by environmentally friendly solvent processed polymeric interconnecting layer, Adv. Energy Mater., 8, 1703180, 10.1002/aenm.201703180 Zhang, 2018, Nonfullerene tandem organic solar cells with high performance of 14.11%, Adv. Mater., 30, 1707508, 10.1002/adma.201707508 Choi, 2019, Low temperature solution-processable 3D-patterned charge recombination layer for organic tandem solar cells, Materials, 12, 162, 10.3390/ma12010162 Ge, 2019, Low-temperature solution-processed hybrid interconnecting layer with bulk/interfacial synergistic effect in symmetric tandem organic solar cells, Org. Electron., 75, 105423, 10.1016/j.orgel.2019.105423 Hoefler, 2019, Elemental nanoanalysis of interfacial alumina–aryl fluoride interactions in fullerene-free organic tandem solar cells, Adv. Mater. Interfaces, 6, 1901053, 10.1002/admi.201901053 Liu, 2019, 15% efficiency tandem organic solar cell based on a novel highly efficient wide-bandgap nonfullerene acceptor with low energy loss, Adv. Energy Mater., 9, 1803657, 10.1002/aenm.201803657 Meng, 2019, A tandem organic solar cell with PCE of 14.52% employing subcells with the same polymer donor and two absorption complementary acceptors, Adv. Mater., 31, 1804723, 10.1002/adma.201804723 Cheng, 2020, Enabling high-performance tandem organic photovoltaic cells by balancing the front and rear subcells, Adv. Mater., 32, 2002315, 10.1002/adma.202002315 Farooq, 2020, Thin-film tandem organic solar cells with improved efficiency, IEEE Access, 8, 74093, 10.1109/ACCESS.2020.2988325 Firdaus, 2020, Novel wide-bandgap non-fullerene acceptors for efficient tandem organic solar cells, J. Mater. Chem., 8, 1164, 10.1039/C9TA11752K Ho, 2020, High-performance tandem organic solar cells using HSolar as the interconnecting layer, Adv. Energy Mater., 2000823, 10.1002/aenm.202000823 Huang, 2020, 15.9% organic tandem solar cell with extended near-infrared absorption, Appl. Phys. Lett., 116, 153501, 10.1063/5.0005172 Liu, 2020, A cross-linked interconnecting layer enabling reliable and reproducible solution-processing of organic tandem solar cells, Adv.Energy Mater., 10, 1903800, 10.1002/aenm.201903800 Zeng, 2020, Incorporation of hydrogen molybdenum bronze in solution-processed interconnecting layer for efficient nonfullerene tandem organic solar cells, Solar RRL, 4, 1900480, 10.1002/solr.201900480 Jackson, 2015, The next breakthrough for organic photovoltaics?, J. Phys. Chem. Lett., 6, 77, 10.1021/jz502223t Yakimov, 2002, High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters, Appl. Phys. Lett., 80, 1667, 10.1063/1.1457531 Olthof, 2012, Photoelectron spectroscopy investigations of recombination contacts for tandem organic solar cells, Appl. Phys. Lett., 100, 71, 10.1063/1.3693385 Zuo, 2015, Design of a versatile interconnecting layer for highly efficient series-connected polymer tandem solar cells, Energy Environ. Sci., 8, 1712, 10.1039/C5EE00633C Sun, 2019, Highly-efficient semi-transparent organic solar cells utilising non-fullerene acceptors with optimised multilayer MoO3/Ag/MoO3 electrodes, Mater. Chem. Frontiers, 3, 450, 10.1039/C8QM00610E Walzer, 2007, Highly efficient organic devices based on electrically doped transport layers, Chem. Rev., 107, 1233, 10.1021/cr050156n Pfaiffer, 1999, Controlled doping of molecular organic layers: physics and device prospects, Adv. Solid State Phys., 39, 77, 10.1007/BFb0107466 Schlettwein, 2001, Electronic energy levels in individual molecules, thin films, and organic heterojunctions of substituted phthalocyanines, J. Phys. Chem. B, 105, 4791, 10.1021/jp001912q Gilot, 2007, Double and triple junction polymer solar cells processed from solution, Appl. Phys. Lett., 90, 143512, 10.1063/1.2719668 Sista, 2010, High-efficiency polymer tandem solar cells with three-terminal structure, Adv. Mater., 22, E77, 10.1002/adma.200902750 Di Carlo Rasi, 2018, A universal route to fabricate n-i-p multi-junction polymer solar cells via solution processing, Solar RRL, 2, 1800018, 10.1002/solr.201800018 Hou, 2015, Improvement of the power conversion efficiency and long term stability of polymer solar cells by incorporation of amphiphilic Nafion doped PEDOT-PSS as a hole extraction layer, J. Mater. Chem., 3, 18727, 10.1039/C5TA03967C Huang, 2010, Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices, Chem. Soc. Rev., 39, 2500, 10.1039/b907991m Yi, 2016, Interfacial engineering for high performance organic photovoltaics, Mater. Today, 19, 169, 10.1016/j.mattod.2015.10.003 Sundaresan, 1987, Electroactive copolymers of pyrrole containing covalently bound dopant ions: poly {pyrrole-co-[3-(pyrrol-1-yl) propanesulphonate]}, J. Chem. Soc., Chem. Commun., 621, 10.1039/c39870000621 Reynolds, 1988, Self-doped conducting copolymers: a charge and mass transport study of poly {pyrrole-CO [3-(pyrrol-1-YL) propanesulfonate]}, J. Electroanal. Chem. Interfacial Electrochem., 250, 355, 10.1016/0022-0728(88)85176-3 He, 2012, Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure, Nat. Photonics, 6, 591, 10.1038/nphoton.2012.190 Huang, 2004, Novel electroluminescent conjugated polyelectrolytes based on polyfluorene, Chem. Mater., 16, 708, 10.1021/cm034650o Wu, 2004, Efficient electron injection from a bilayer cathode consisting of aluminum and alcohol-/water-soluble conjugated polymers, Adv. Mater., 16, 1826, 10.1002/adma.200400067 Liu, 2013, Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency, Sci. Rep., 3, 1, 10.1038/srep03356 Martínez-Otero, 2015, An extremely thin and robust interconnecting layer providing 76% fill factor in a tandem polymer solar cell architecture, J. Mater. Chem., 3, 10681, 10.1039/C5TA02205C Kang, 2015, Simplified tandem polymer solar cells with an ideal self-organized recombination layer, Adv. Mater., 27, 1408, 10.1002/adma.201404765 Firdaus, 2019, Key parameters requirements for non-fullerene-based organic solar cells with power conversion Efficiency> 20%, Adv. Sci., 6, 1802028, 10.1002/advs.201802028