Interconnecting layers for tandem organic solar cells
Tài liệu tham khảo
Tsao, 2006, vol. 13
Darling, 2013, The case for organic photovoltaics, RSC Adv., 3, 17633, 10.1039/c3ra42989j
Kang, 2016, Bulk-heterojunction organic solar cells: five core technologies for their commercialization, Adv. Mater., 28, 7821, 10.1002/adma.201601197
Liu, 2020, 18% Efficiency organic solar cells, Sci. Bull., 65, 272, 10.1016/j.scib.2020.01.001
Lin, 2020, self-assembled monolayer enables HTL-free organic solar cells with 18% efficiency and improved operational stability, ACS Energy Letters, 10.1021/acsenergylett.0c01421
Yin, 2020, Recent progress of all-polymer solar cells–From chemical structure and device physics to photovoltaic performance, Mater. Sci. Eng. R Rep., 140, 100542, 10.1016/j.mser.2019.100542
Yin, 2019, Observing electron transport and percolation in selected bulk heterojunctions bearing fullerene derivatives, non-fullerene small molecules, and polymeric acceptors, Nanomater. Energy, 64, 103950, 10.1016/j.nanoen.2019.103950
Meng, 2018, Organic and solution-processed tandem solar cells with 17.3% efficiency, Science, 361, 1094, 10.1126/science.aat2612
Chen, 2009, Construction and characteristics of tandem organic solar cells featuring small molecule-based films on polymer-based subcells, J. Phys. D Appl. Phys., 43
Cheyns, 2010, Organic tandem solar cells with complementary absorbing layers and a high open-circuit voltage, Appl. Phys. Lett., 97, 150, 10.1063/1.3464169
Sakai, 2010, Efficient organic photovoltaic tandem cells with novel transparent conductive oxide interlayer and poly (3-hexylthiophene): fullerene active layers, Sol. Energy Mater. Sol. Cells, 94, 376, 10.1016/j.solmat.2009.08.008
Taima, 2010, Tandem organic photovoltaic cells based on low-molecular-weight semiconductors, Jpn. J. Appl. Phys., 49, 10.1143/JJAP.49.01AC04
Lee, 2011, Transparent electrode with ZnO nanoparticles in tandem organic solar cells, Sol. Energy Mater. Sol. Cells, 95, 365, 10.1016/j.solmat.2010.04.020
Pattnaik, 2012, Novel hybrid amorphous/organic tandem junction solar cell, IEEE J. Photovoltaics, 3, 295, 10.1109/JPHOTOV.2012.2212700
Puetz, 2012, Solution processable, precursor based zinc oxide buffer layers for 4.5% efficient organic tandem solar cells, Org. Electron., 13, 2696, 10.1016/j.orgel.2012.07.043
Yang, 2012, Organic tandem solar cell using active inter-connecting layer, Org. Electron., 13, 1018, 10.1016/j.orgel.2012.02.015
Zou, 2012, Very high open-circuit voltage of 5.89 V in organic solar cells with 10-fold-tandem structure, Appl. Phys. Lett., 100, 126, 10.1063/1.4729009
bin Mohd Yusoff, 2013, Extremely stable all solution processed organic tandem solar cells with TiO 2/GO recombination layer under continuous light illumination, Nanoscale, 5, 11051, 10.1039/c3nr03068g
Ishiyama, 2013, Tandem organic solar cells formed in co-deposited films by doping, Org. Electron., 14, 1793, 10.1016/j.orgel.2013.04.003
Jo, 2013, Enhanced efficiency of single and tandem organic solar cells incorporating a diketopyrrolopyrrole-based low-bandgap polymer by utilizing combined ZnO/polyelectrolyte electron-transport layers, Adv. Mater., 25, 4783, 10.1002/adma.201301288
Kim, 2013, High open circuit voltage solution-processed tandem organic photovoltaic cells employing a bottom cell using a new medium band gap semiconducting polymer, Chem. Mater., 25, 2722, 10.1021/cm401527b
Li, 2013, Development of large band-gap conjugated copolymers for efficient regular single and tandem organic solar cells, J. Am. Chem. Soc., 135, 13549, 10.1021/ja406220a
Li, 2013, Towards 15% energy conversion efficiency: a systematic study of the solution-processed organic tandem solar cells based on commercially available materials, Energy Environ. Sci., 6, 3407, 10.1039/c3ee42307g
New, 2013, Small molecule tandem organic photovoltaic cells incorporating an α-NPD optical spacer layer, Org. Electron., 14, 2353, 10.1016/j.orgel.2013.05.037
Che, 2014, High-efficiency, vacuum-deposited, small-molecule organic tandem and triple-junction photovoltaic cells, Adv. Energy Mater., 4, 1400568, 10.1002/aenm.201400568
Jin, 2014, Highly efficient organic tandem solar cell based on SubPc: C70 bulk heterojunction, Org. Electron., 15, 3756, 10.1016/j.orgel.2014.10.019
Kim, 2014, Effect of π-conjugated bridges of TPD-based medium bandgap conjugated copolymers for efficient tandem organic photovoltaic cells, Energy Environ. Sci., 7, 4118, 10.1039/C4EE02318H
Kim, 2014, Fluorinated benzoselenadiazole-based low-band-gap polymers for high efficiency inverted single and tandem organic photovoltaic cells, Macromolecules, 47, 1613, 10.1021/ma4026493
Kim, 2014, Thieno [3, 2-b] thiophene-substituted benzo [1, 2-b: 4, 5-b′] dithiophene as a promising building block for low bandgap semiconducting polymers for high-performance single and tandem organic photovoltaic cells, Chem. Mater., 26, 1234, 10.1021/cm4035903
Lechene, 2014, Design of intermediate layers for solution-processed tandem organic solar cells: guidelines from a case study on TiOx and ZnO, Sol. Energy Mater. Sol. Cells, 120, 709, 10.1016/j.solmat.2013.08.032
Li, 2014, A universal method to form the equivalent ohmic contact for efficient solution-processed organic tandem solar cells, J. Mater. Chem., 2, 14896, 10.1039/C4TA03182B
Qin, 2014, High efficiency organic/a-Si hybrid tandem solar cells with complementary light absorption, J. Mater. Chem., 2, 15303, 10.1039/C4TA02690J
Shim, 2014, Correlation of the electronic structure of an interconnection unit with the device performance of tandem organic solar cells, J. Mater. Chem., 2, 5450, 10.1039/C3TA14628F
Spyropoulos, 2014, Flexible organic tandem solar modules with 6% efficiency: combining roll-to-roll compatible processing with high geometric fill factors, Energy Environ. Sci., 7, 3284, 10.1039/C4EE02003K
Zuo, 2014, Microcavity-enhanced light-trapping for highly efficient organic parallel tandem solar cells, Adv. Mater., 26, 6778, 10.1002/adma.201402782
Bahro, 2015, Understanding the external quantum efficiency of organic homo-tandem solar cells utilizing a three-terminal device architecture, Adv Energy Mater, 5, 1501019, 10.1002/aenm.201501019
bin Mohd Yusoff, 2015, A high efficiency solution processed polymer inverted triple-junction solar cell exhibiting a power conversion efficiency of 11.83%, Energy Environ. Sci., 8, 303, 10.1039/C4EE03048F
Guo, 2015, Fully printed organic tandem solar cells using solution-processed silver nanowires and opaque silver as charge collecting electrodes, Energy Environ. Sci., 8, 1690, 10.1039/C5EE00184F
Kim, 2015, Controlling the morphology of BDTT-DPP-based small molecules via end-group functionalization for highly efficient single and tandem organic photovoltaic cells, ACS Appl. Mater. Interfaces, 7, 23866, 10.1021/acsami.5b05248
Lee, 2015, Polymer/small-molecule parallel tandem organic solar cells based on MoOx–Ag–MoOx intermediate electrodes, Sol. Energy Mater. Sol. Cells, 137, 34, 10.1016/j.solmat.2015.01.012
Lu, 2015, A new interconnecting layer of metal oxide/dipole layer/metal oxide for efficient tandem organic solar cells, Adv. Energy Mater., 5, 1500631, 10.1002/aenm.201500631
Shim, 2015, Efficient vacuum-deposited tandem organic solar cells with fill factors higher than single-junction subcells, Adv. Energy Mater., 5, 1500228, 10.1002/aenm.201500228
Tong, 2015, Vacuum-free and metal electrode-free organic tandem solar cells, Appl. Phys. Lett., 106, 10.1063/1.4907864
Torabi, 2015, Development of a silver/polymer nanocomposite interconnection layer for organic tandem solar cells, J. Nanophotonics, 9
Wang, 2015, Enhanced fill factor of tandem organic solar cells incorporating a diketopyrrolopyrrole-based low-bandgap polymer and optimized interlayer, ChemSusChem, 8, 331, 10.1002/cssc.201402833
Gao, 2016, Highly efficient organic tandem solar cell with a SubPc interlayer based on TAPC: C 70 bulk heterojunction, Sci. Rep., 6, 23916, 10.1038/srep23916
Liu, 2016, Nonfullerene tandem organic solar cells with high open-circuit voltage of 1.97 V, Adv. Mater., 28, 9729, 10.1002/adma.201603518
Lu, 2016, The incorporation of thermionic emission and work function tuning layer into intermediate connecting layer for high performance tandem organic solar cells, Nanomater. Energy, 21, 123, 10.1016/j.nanoen.2016.01.002
Prosa, 2016, Efficient and versatile interconnection layer by solvent treatment of PEDOT: PSS interlayer for air-processed organic tandem solar cells, Advanced Materials Interfaces, 3, 1600770, 10.1002/admi.201600770
Zheng, 2016, Effect of 3, 4, 9, 10-perylenetetracarboxylic bisbenzimidazole (PTCBI) as well as bathocuproine (BCP) and Ag interlayer thickness on the performance of organic tandem solar cells, Synth. Met., 221, 179, 10.1016/j.synthmet.2016.09.001
Chang, 2017, High-efficiency organic tandem solar cells with effective transition metal chelates interconnecting layer, Solar RRL, 1, 1700139, 10.1002/solr.201700139
Chen, 2017, An all-solution processed recombination layer with mild post-treatment enabling efficient Homo-tandem non-fullerene organic solar cells, Adv. Mater., 29, 1604231, 10.1002/adma.201604231
Cui, 2017, Fine-tuned photoactive and interconnection layers for achieving over 13% efficiency in a fullerene-free tandem organic solar cell, J. Am. Chem. Soc., 139, 7302, 10.1021/jacs.7b01493
Ho, 2017, Solution-processed transparent intermediate layer for organic tandem solar cell using nitrogen-doped graphene quantum dots, J. Nanosci. Nanotechnol., 17, 5686, 10.1166/jnn.2017.14138
Ka, 2017, Hybrid organic tandem solar cell comprising small-molecule bottom and polymer: fullerene top subcells fabricated by thin-film transfer, Sci. Rep., 7, 1, 10.1038/s41598-017-02181-6
Li, 2017, Solution-processed organic tandem solar cells with power conversion efficiencies> 12%, Nat. Photonics, 11, 85, 10.1038/nphoton.2016.240
Lu, 2017, A switchable interconnecting layer for high performance tandem organic solar cell, Adv. Energy Mater., 7, 1701164, 10.1002/aenm.201701164
Mao, 2017, Flexible large-area organic tandem solar cells with high defect tolerance and device yield, J. Mater. Chem., 5, 3186, 10.1039/C6TA10106B
Qin, 2017, Achieving 12.8% efficiency by simultaneously improving open-circuit voltage and short-circuit current density in tandem organic solar cells, Adv. Mater., 29, 1606340, 10.1002/adma.201606340
Raïssi, 2017, Solution processed cathode and interconnecting layer of silver nanowires in an efficient inverted tandem organic solar cells, Sol. Energy Mater. Sol. Cells, 160, 494, 10.1016/j.solmat.2016.11.010
Yang, 2017, An efficient and thermally stable interconnecting layer for tandem organic solar cells, Sol. Energy, 155, 552, 10.1016/j.solener.2017.06.054
Zuo, 2017, High-efficiency nonfullerene organic solar cells with a parallel tandem configuration, Adv. Mater., 29, 1702547, 10.1002/adma.201702547
Becker, 2018, All-oxide MoOx/SnOx charge recombination interconnects for inverted organic tandem solar cells, Adv. Energy Mater., 8, 1702533, 10.1002/aenm.201702533
Chen, 2018, A nonfullerene semitransparent tandem organic solar cell with 10.5% power conversion efficiency, Adv. Energy Mater., 8, 1800529, 10.1002/aenm.201800529
Glaser, 2018, Rapid experimental optimization of organic tandem solar cells: 200 absorber layer thickness combinations on a 4× 4 cm 2 substrate, J. Mater. Chem., 6, 9257, 10.1039/C8TA00590G
Guo, 2018, Exceeding 14% efficiency for solution-processed tandem organic solar cells combining fullerene-and nonfullerene-based subcells with complementary absorption, ACS Energy Letters, 3, 2566, 10.1021/acsenergylett.8b01448
Lee, 2018, Homo-tandem structures to achieve the ideal external quantum efficiency in small molecular organic solar cells, Opt Express, 26, A697, 10.1364/OE.26.00A697
Mayer, 2018, Optical enhancement of a printed organic tandem solar cell using diffractive nanostructures, Opt Express, 26, A240, 10.1364/OE.26.00A240
Zhang, 2018, Highly efficient tandem organic solar cell enabled by environmentally friendly solvent processed polymeric interconnecting layer, Adv. Energy Mater., 8, 1703180, 10.1002/aenm.201703180
Zhang, 2018, Nonfullerene tandem organic solar cells with high performance of 14.11%, Adv. Mater., 30, 1707508, 10.1002/adma.201707508
Choi, 2019, Low temperature solution-processable 3D-patterned charge recombination layer for organic tandem solar cells, Materials, 12, 162, 10.3390/ma12010162
Ge, 2019, Low-temperature solution-processed hybrid interconnecting layer with bulk/interfacial synergistic effect in symmetric tandem organic solar cells, Org. Electron., 75, 105423, 10.1016/j.orgel.2019.105423
Hoefler, 2019, Elemental nanoanalysis of interfacial alumina–aryl fluoride interactions in fullerene-free organic tandem solar cells, Adv. Mater. Interfaces, 6, 1901053, 10.1002/admi.201901053
Liu, 2019, 15% efficiency tandem organic solar cell based on a novel highly efficient wide-bandgap nonfullerene acceptor with low energy loss, Adv. Energy Mater., 9, 1803657, 10.1002/aenm.201803657
Meng, 2019, A tandem organic solar cell with PCE of 14.52% employing subcells with the same polymer donor and two absorption complementary acceptors, Adv. Mater., 31, 1804723, 10.1002/adma.201804723
Cheng, 2020, Enabling high-performance tandem organic photovoltaic cells by balancing the front and rear subcells, Adv. Mater., 32, 2002315, 10.1002/adma.202002315
Farooq, 2020, Thin-film tandem organic solar cells with improved efficiency, IEEE Access, 8, 74093, 10.1109/ACCESS.2020.2988325
Firdaus, 2020, Novel wide-bandgap non-fullerene acceptors for efficient tandem organic solar cells, J. Mater. Chem., 8, 1164, 10.1039/C9TA11752K
Ho, 2020, High-performance tandem organic solar cells using HSolar as the interconnecting layer, Adv. Energy Mater., 2000823, 10.1002/aenm.202000823
Huang, 2020, 15.9% organic tandem solar cell with extended near-infrared absorption, Appl. Phys. Lett., 116, 153501, 10.1063/5.0005172
Liu, 2020, A cross-linked interconnecting layer enabling reliable and reproducible solution-processing of organic tandem solar cells, Adv.Energy Mater., 10, 1903800, 10.1002/aenm.201903800
Zeng, 2020, Incorporation of hydrogen molybdenum bronze in solution-processed interconnecting layer for efficient nonfullerene tandem organic solar cells, Solar RRL, 4, 1900480, 10.1002/solr.201900480
Jackson, 2015, The next breakthrough for organic photovoltaics?, J. Phys. Chem. Lett., 6, 77, 10.1021/jz502223t
Yakimov, 2002, High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters, Appl. Phys. Lett., 80, 1667, 10.1063/1.1457531
Olthof, 2012, Photoelectron spectroscopy investigations of recombination contacts for tandem organic solar cells, Appl. Phys. Lett., 100, 71, 10.1063/1.3693385
Zuo, 2015, Design of a versatile interconnecting layer for highly efficient series-connected polymer tandem solar cells, Energy Environ. Sci., 8, 1712, 10.1039/C5EE00633C
Sun, 2019, Highly-efficient semi-transparent organic solar cells utilising non-fullerene acceptors with optimised multilayer MoO3/Ag/MoO3 electrodes, Mater. Chem. Frontiers, 3, 450, 10.1039/C8QM00610E
Walzer, 2007, Highly efficient organic devices based on electrically doped transport layers, Chem. Rev., 107, 1233, 10.1021/cr050156n
Pfaiffer, 1999, Controlled doping of molecular organic layers: physics and device prospects, Adv. Solid State Phys., 39, 77, 10.1007/BFb0107466
Schlettwein, 2001, Electronic energy levels in individual molecules, thin films, and organic heterojunctions of substituted phthalocyanines, J. Phys. Chem. B, 105, 4791, 10.1021/jp001912q
Gilot, 2007, Double and triple junction polymer solar cells processed from solution, Appl. Phys. Lett., 90, 143512, 10.1063/1.2719668
Sista, 2010, High-efficiency polymer tandem solar cells with three-terminal structure, Adv. Mater., 22, E77, 10.1002/adma.200902750
Di Carlo Rasi, 2018, A universal route to fabricate n-i-p multi-junction polymer solar cells via solution processing, Solar RRL, 2, 1800018, 10.1002/solr.201800018
Hou, 2015, Improvement of the power conversion efficiency and long term stability of polymer solar cells by incorporation of amphiphilic Nafion doped PEDOT-PSS as a hole extraction layer, J. Mater. Chem., 3, 18727, 10.1039/C5TA03967C
Huang, 2010, Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices, Chem. Soc. Rev., 39, 2500, 10.1039/b907991m
Yi, 2016, Interfacial engineering for high performance organic photovoltaics, Mater. Today, 19, 169, 10.1016/j.mattod.2015.10.003
Sundaresan, 1987, Electroactive copolymers of pyrrole containing covalently bound dopant ions: poly {pyrrole-co-[3-(pyrrol-1-yl) propanesulphonate]}, J. Chem. Soc., Chem. Commun., 621, 10.1039/c39870000621
Reynolds, 1988, Self-doped conducting copolymers: a charge and mass transport study of poly {pyrrole-CO [3-(pyrrol-1-YL) propanesulfonate]}, J. Electroanal. Chem. Interfacial Electrochem., 250, 355, 10.1016/0022-0728(88)85176-3
He, 2012, Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure, Nat. Photonics, 6, 591, 10.1038/nphoton.2012.190
Huang, 2004, Novel electroluminescent conjugated polyelectrolytes based on polyfluorene, Chem. Mater., 16, 708, 10.1021/cm034650o
Wu, 2004, Efficient electron injection from a bilayer cathode consisting of aluminum and alcohol-/water-soluble conjugated polymers, Adv. Mater., 16, 1826, 10.1002/adma.200400067
Liu, 2013, Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency, Sci. Rep., 3, 1, 10.1038/srep03356
Martínez-Otero, 2015, An extremely thin and robust interconnecting layer providing 76% fill factor in a tandem polymer solar cell architecture, J. Mater. Chem., 3, 10681, 10.1039/C5TA02205C
Kang, 2015, Simplified tandem polymer solar cells with an ideal self-organized recombination layer, Adv. Mater., 27, 1408, 10.1002/adma.201404765
Firdaus, 2019, Key parameters requirements for non-fullerene-based organic solar cells with power conversion Efficiency> 20%, Adv. Sci., 6, 1802028, 10.1002/advs.201802028