Interconnected MnCO3 nanostructures anchored on carbon fibers with enhanced potassium storage performance
Tài liệu tham khảo
Goodenough, 2013, The Li-ion rechargeable battery: a perspective, J. Am. Chem. Soc., 135, 1167, 10.1021/ja3091438
Chan, 2008, High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol., 3, 31, 10.1038/nnano.2007.411
Etacheri, 2011, Challenges in the development of advanced Li-ion batteries: a review, Energy Environ. Sci., 4, 3243, 10.1039/c1ee01598b
Yabuuchi, 2014, Research development on sodium-ion batteries, Chem. Rev., 114, 11636, 10.1021/cr500192f
Hwang, 2017, Sodium-ion batteries: present and future, Chem. Soc. Rev., 46, 3529, 10.1039/C6CS00776G
Jian, 2015, Carbon electrodes for K-ion batteries, J. Am. Chem. Soc., 137, 11566, 10.1021/jacs.5b06809
Luo, 2015, Potassium ion batteries with graphitic materials, Nano Lett., 15, 7671, 10.1021/acs.nanolett.5b03667
Elia, 2016, An overview and future perspectives of aluminum batteries, Adv. Mater., 28, 7564, 10.1002/adma.201601357
Tang, 2019, Issues and opportunities facing aqueous zinc-ion batteries, Energy Environ. Sci., 12, 3288, 10.1039/C9EE02526J
Pramudita, 2017, An initial review of the status of electrode materials for potassium ion batteries, Adv. Energy Mater., 7, 1602911, 10.1002/aenm.201602911
Ahmed, 2021, Improvement in potassium ion batteries electrodes: recent developments and efficient approaches, J. Energy Chem., 62, 307, 10.1016/j.jechem.2021.03.032
Zhang, 2019, Approaching high-performance potassium-ion batteries via advanced design strategies and engineering, Sci. Adv., 5, 10.1126/sciadv.aav7412
Share, 2016, Role of nitrogen-doped graphene for improved high-capacity potassium ion battery anodes, ACS Nano, 10, 9738, 10.1021/acsnano.6b05998
Jian, 2016, Hard carbon microspheres: potassium ion anode versus sodium ion anode, Adv. Energy Mater., 6, 1501874, 10.1002/aenm.201501874
Jian, 2017, Hard–soft composite carbon as a long cycling and high rate anode for potassium ion batteries, Adv. Funct. Mater., 27, 1700324, 10.1002/adfm.201700324
Xiong, 2018, Nitrogen Doped carbon nanotubes derived from metal–organic frameworks for potassium ion battery anodes, ChemSusChem, 11, 202, 10.1002/cssc.201701759
Suo, 2020, Flexible N doped carbon/bubble-like MoS2 core/sheath framework: buffering volume expansion for potassium ion batteries, J. Colloid Interface Sci., 566, 427, 10.1016/j.jcis.2020.01.113
Wang, 2018, Pistachio shuck like MoSe2/C core/shell nanostructures for high-performance potassium ion storage, Adv. Mater., 30, 1801812, 10.1002/adma.201801812
Suo, 2020, N-doped carbon/ultrathin 2D metallic cobalt selenide core/sheath flexible framework bridged by chemical bonds for high-performance potassium storage, Chem. Eng. J., 388, 124396, 10.1016/j.cej.2020.124396
Gao, 2017, CoS quantum dot nanoclusters for high energy potassium ion batteries, Adv. Funct. Mater., 27, 1702634, 10.1002/adfm.201702634
Yang, 2018, Metallic graphene like VSe2 ultrathin nanosheets: superior potassium-ion storage and their working mechanism, Adv. Mater., 30, 1800036, 10.1002/adma.201800036
Han, 2016, Exploration of K 2 Ti 8 O 17 as an anode material for potassium-ion batteries, Chem. Commun., 52, 11274, 10.1039/C6CC05102B
Zeng, 2018, Ultrathin titanate nanosheets/graphene films derived from confined transformation for excellent Na/K ion storage, Angew. Chem., 130, 8676, 10.1002/ange.201803511
Kishore, 2016, K2Ti4O9: a promising anode material for potassium ion batteries, J. Electrochem. Soc., 163, A2551, 10.1149/2.0421613jes
Suo, 2022, Heterostructured CoS2/CuCo2S4@ N-doped carbon hollow sphere for potassium-ion batteries, J. Colloid Interface Sci., 608, 275, 10.1016/j.jcis.2021.09.137
Sultana, 2016, Tin-based composite anodes for potassium-ion batteries, Chem. Commun., 52, 9279, 10.1039/C6CC03649J
Zheng, 2019, Extremely stable antimony–carbon composite anodes for potassium-ion batteries, Energy Environ. Sci., 12, 615, 10.1039/C8EE02836B
Sultana, 2018, Potassium-ion battery anode materials operating through the alloying–dealloying reaction mechanism, Adv. Funct. Mater., 28, 1703857, 10.1002/adfm.201703857
Li, 2020, Amorphous carbon coated SnO2 nanohseets on hard carbon hollow spheres to boost potassium storage with high surface capacitive contributions, J. Colloid Interface Sci., 574, 174, 10.1016/j.jcis.2020.04.045
Suo, 2020, Construction of SnS2/SnO2 heterostructures with enhanced potassium storage performance, J. Mater. Sci. Technol., 55, 167, 10.1016/j.jmst.2019.05.074
Su, 2013, CoCO3 submicrocube/graphene composites with high lithium storage capability, Nano Energy, 2, 276, 10.1016/j.nanoen.2012.09.012
Zhou, 2014, Hydrothermal fabrication of MnCO3@ rGO composite as an anode material for high-performance lithium ion batteries, Inorg. Chem., 53, 9228, 10.1021/ic501321z
Bhojane, 2019, A 3D mesoporous flowers of nickel carbonate hydroxide hydrate for high-performance electrochemical energy storage application, Electrochim. Acta, 296, 112, 10.1016/j.electacta.2018.11.025
Li, 2018, Doping of Ni and Zn elements in MnCO3: high-power anode material for lithium–ion batteries, Small, 14, 1702574, 10.1002/smll.201702574
Ruan, 2019, Facile synthesis of graphene-wrapped porous MnCO3 microspheres with enhanced surface capacitive effects for superior lithium storage, Chem. Eng. J., 367, 64, 10.1016/j.cej.2019.01.157
Bruce, 2008, Nanomaterials for rechargeable lithium batteries, Angew. Chem. Int. Ed., 47, 2930, 10.1002/anie.200702505
Zhao, 2018, Phase Transition and vibration properties of MnCO3 at high pressure and high-temperature by Raman spectroscopy, High Pres. Res., 38, 212, 10.1080/08957959.2018.1476505
Xiao, 2016, High-capacity and self-stabilized manganese carbonate microspheres as anode material for lithium-ion batteries, ACS Appl. Mater. Interfaces, 8, 25369, 10.1021/acsami.6b09022
Qi, 2021, Spindle MnCO3 tightly encapsulated by MXene nanoflakes with strengthened interface effect for lithium-ion battery, Surf. Coating. Technol., 417, 127192, 10.1016/j.surfcoat.2021.127192
Chong, 2019, Chemical bonding boosts nano-rose-like MoS2 anchored on reduced graphene oxide for superior potassium-ion storage, Nano Energy, 63, 103868, 10.1016/j.nanoen.2019.103868
Suo, 2019, Tuning defect and hollow size of metallic KxCoF3 for ultrastable potassium storage, Energy Storage Mater., 21, 196, 10.1016/j.ensm.2019.05.048
Jia, 2018, Bamboo-like hollow tubes with MoS2/N-doped-C interfaces boost potassium-ion storage, Adv. Funct. Mater., 28, 1803409, 10.1002/adfm.201803409
Brezesinski, 2010, Ordered mesoporous α-MoO 3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors, Nat. Mater., 9, 146, 10.1038/nmat2612
Chen, 2012, High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites, ACS Nano, 6, 4319, 10.1021/nn300920e
Xia, 2016, Generic synthesis of carbon nanotube branches on metal oxide arrays exhibiting stable high-rate and long-cycle sodium-ion storage, Small, 12, 3048, 10.1002/smll.201600633