Interconnected MnCO3 nanostructures anchored on carbon fibers with enhanced potassium storage performance

Materials Today Chemistry - Tập 25 - Trang 100904 - 2022
Guoquan Suo1, Yan Cheng1, Jiaqi Zhang1, Syed Musab Ahmed1, Xiaojiang Hou1, Yanling Yang1, Xiaohui Ye1, Li Zhang1
1School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China

Tài liệu tham khảo

Goodenough, 2013, The Li-ion rechargeable battery: a perspective, J. Am. Chem. Soc., 135, 1167, 10.1021/ja3091438 Chan, 2008, High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol., 3, 31, 10.1038/nnano.2007.411 Etacheri, 2011, Challenges in the development of advanced Li-ion batteries: a review, Energy Environ. Sci., 4, 3243, 10.1039/c1ee01598b Yabuuchi, 2014, Research development on sodium-ion batteries, Chem. Rev., 114, 11636, 10.1021/cr500192f Hwang, 2017, Sodium-ion batteries: present and future, Chem. Soc. Rev., 46, 3529, 10.1039/C6CS00776G Jian, 2015, Carbon electrodes for K-ion batteries, J. Am. Chem. Soc., 137, 11566, 10.1021/jacs.5b06809 Luo, 2015, Potassium ion batteries with graphitic materials, Nano Lett., 15, 7671, 10.1021/acs.nanolett.5b03667 Elia, 2016, An overview and future perspectives of aluminum batteries, Adv. Mater., 28, 7564, 10.1002/adma.201601357 Tang, 2019, Issues and opportunities facing aqueous zinc-ion batteries, Energy Environ. Sci., 12, 3288, 10.1039/C9EE02526J Pramudita, 2017, An initial review of the status of electrode materials for potassium ion batteries, Adv. Energy Mater., 7, 1602911, 10.1002/aenm.201602911 Ahmed, 2021, Improvement in potassium ion batteries electrodes: recent developments and efficient approaches, J. Energy Chem., 62, 307, 10.1016/j.jechem.2021.03.032 Zhang, 2019, Approaching high-performance potassium-ion batteries via advanced design strategies and engineering, Sci. Adv., 5, 10.1126/sciadv.aav7412 Share, 2016, Role of nitrogen-doped graphene for improved high-capacity potassium ion battery anodes, ACS Nano, 10, 9738, 10.1021/acsnano.6b05998 Jian, 2016, Hard carbon microspheres: potassium ion anode versus sodium ion anode, Adv. Energy Mater., 6, 1501874, 10.1002/aenm.201501874 Jian, 2017, Hard–soft composite carbon as a long cycling and high rate anode for potassium ion batteries, Adv. Funct. Mater., 27, 1700324, 10.1002/adfm.201700324 Xiong, 2018, Nitrogen Doped carbon nanotubes derived from metal–organic frameworks for potassium ion battery anodes, ChemSusChem, 11, 202, 10.1002/cssc.201701759 Suo, 2020, Flexible N doped carbon/bubble-like MoS2 core/sheath framework: buffering volume expansion for potassium ion batteries, J. Colloid Interface Sci., 566, 427, 10.1016/j.jcis.2020.01.113 Wang, 2018, Pistachio shuck like MoSe2/C core/shell nanostructures for high-performance potassium ion storage, Adv. Mater., 30, 1801812, 10.1002/adma.201801812 Suo, 2020, N-doped carbon/ultrathin 2D metallic cobalt selenide core/sheath flexible framework bridged by chemical bonds for high-performance potassium storage, Chem. Eng. J., 388, 124396, 10.1016/j.cej.2020.124396 Gao, 2017, CoS quantum dot nanoclusters for high energy potassium ion batteries, Adv. Funct. Mater., 27, 1702634, 10.1002/adfm.201702634 Yang, 2018, Metallic graphene like VSe2 ultrathin nanosheets: superior potassium-ion storage and their working mechanism, Adv. Mater., 30, 1800036, 10.1002/adma.201800036 Han, 2016, Exploration of K 2 Ti 8 O 17 as an anode material for potassium-ion batteries, Chem. Commun., 52, 11274, 10.1039/C6CC05102B Zeng, 2018, Ultrathin titanate nanosheets/graphene films derived from confined transformation for excellent Na/K ion storage, Angew. Chem., 130, 8676, 10.1002/ange.201803511 Kishore, 2016, K2Ti4O9: a promising anode material for potassium ion batteries, J. Electrochem. Soc., 163, A2551, 10.1149/2.0421613jes Suo, 2022, Heterostructured CoS2/CuCo2S4@ N-doped carbon hollow sphere for potassium-ion batteries, J. Colloid Interface Sci., 608, 275, 10.1016/j.jcis.2021.09.137 Sultana, 2016, Tin-based composite anodes for potassium-ion batteries, Chem. Commun., 52, 9279, 10.1039/C6CC03649J Zheng, 2019, Extremely stable antimony–carbon composite anodes for potassium-ion batteries, Energy Environ. Sci., 12, 615, 10.1039/C8EE02836B Sultana, 2018, Potassium-ion battery anode materials operating through the alloying–dealloying reaction mechanism, Adv. Funct. Mater., 28, 1703857, 10.1002/adfm.201703857 Li, 2020, Amorphous carbon coated SnO2 nanohseets on hard carbon hollow spheres to boost potassium storage with high surface capacitive contributions, J. Colloid Interface Sci., 574, 174, 10.1016/j.jcis.2020.04.045 Suo, 2020, Construction of SnS2/SnO2 heterostructures with enhanced potassium storage performance, J. Mater. Sci. Technol., 55, 167, 10.1016/j.jmst.2019.05.074 Su, 2013, CoCO3 submicrocube/graphene composites with high lithium storage capability, Nano Energy, 2, 276, 10.1016/j.nanoen.2012.09.012 Zhou, 2014, Hydrothermal fabrication of MnCO3@ rGO composite as an anode material for high-performance lithium ion batteries, Inorg. Chem., 53, 9228, 10.1021/ic501321z Bhojane, 2019, A 3D mesoporous flowers of nickel carbonate hydroxide hydrate for high-performance electrochemical energy storage application, Electrochim. Acta, 296, 112, 10.1016/j.electacta.2018.11.025 Li, 2018, Doping of Ni and Zn elements in MnCO3: high-power anode material for lithium–ion batteries, Small, 14, 1702574, 10.1002/smll.201702574 Ruan, 2019, Facile synthesis of graphene-wrapped porous MnCO3 microspheres with enhanced surface capacitive effects for superior lithium storage, Chem. Eng. J., 367, 64, 10.1016/j.cej.2019.01.157 Bruce, 2008, Nanomaterials for rechargeable lithium batteries, Angew. Chem. Int. Ed., 47, 2930, 10.1002/anie.200702505 Zhao, 2018, Phase Transition and vibration properties of MnCO3 at high pressure and high-temperature by Raman spectroscopy, High Pres. Res., 38, 212, 10.1080/08957959.2018.1476505 Xiao, 2016, High-capacity and self-stabilized manganese carbonate microspheres as anode material for lithium-ion batteries, ACS Appl. Mater. Interfaces, 8, 25369, 10.1021/acsami.6b09022 Qi, 2021, Spindle MnCO3 tightly encapsulated by MXene nanoflakes with strengthened interface effect for lithium-ion battery, Surf. Coating. Technol., 417, 127192, 10.1016/j.surfcoat.2021.127192 Chong, 2019, Chemical bonding boosts nano-rose-like MoS2 anchored on reduced graphene oxide for superior potassium-ion storage, Nano Energy, 63, 103868, 10.1016/j.nanoen.2019.103868 Suo, 2019, Tuning defect and hollow size of metallic KxCoF3 for ultrastable potassium storage, Energy Storage Mater., 21, 196, 10.1016/j.ensm.2019.05.048 Jia, 2018, Bamboo-like hollow tubes with MoS2/N-doped-C interfaces boost potassium-ion storage, Adv. Funct. Mater., 28, 1803409, 10.1002/adfm.201803409 Brezesinski, 2010, Ordered mesoporous α-MoO 3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors, Nat. Mater., 9, 146, 10.1038/nmat2612 Chen, 2012, High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites, ACS Nano, 6, 4319, 10.1021/nn300920e Xia, 2016, Generic synthesis of carbon nanotube branches on metal oxide arrays exhibiting stable high-rate and long-cycle sodium-ion storage, Small, 12, 3048, 10.1002/smll.201600633