Intercalation in two-dimensional transition metal chalcogenides

Inorganic Chemistry Frontiers - Tập 3 Số 4 - Trang 452-463
Yeonwoong Jung1,2,3,4, Yu Zhou5,6,7,8, J. Judy9,5,6,7
1Department of Materials Science and Engineering
2Nanoscience Technology Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32826, USA
3Orlando
4University of Central Florida
5Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06511, USA
6Energy Sciences Institute
7Energy Sciences Institute, Yale West Campus, West Haven, CT 06525, USA
8New Haven
9Center for Research on Interface Structures and Phenomena, Yale University, New Haven, CT 06511, USA

Tóm tắt

We review various exfoliation methods and extensive tuning of chemical and physical properties for 2D layered nanomaterials based on intercalation chemistry.

Từ khóa


Tài liệu tham khảo

S. M. Auerbach , K. A.Carrado and P. K.Dutta, Handbook of layered materials, CRC Press, 2004

Wallace, 1947, Phys. Rev., 71, 622, 10.1103/PhysRev.71.622

Keyes, 1953, Phys. Rev., 92, 580, 10.1103/PhysRev.92.580

N. C. Norman , Chemistry of arsenic, antimony and bismuth, Springer Science & Business Media, 1998

P. S. Braterman , Z. P.Xu and F.Yarberry, Handbook of layered materials, 2004, 373–474

Lee, 2014, Adv. Mater., 26, 2812, 10.1002/adma.201304973

He, 2014, Nat. Commun., 5, 5162, 10.1038/ncomms6162

Chhowalla, 2013, Nat. Chem., 5, 263, 10.1038/nchem.1589

Cha, 2012, Nat. Nanotechnol., 7, 85, 10.1038/nnano.2012.9

Peng, 2010, Nat. Mater., 9, 225, 10.1038/nmat2609

Li, 1992, Phys. Rev. Lett., 68, 3240, 10.1103/PhysRevLett.68.3240

Chhowalla, 2015, Chem. Soc. Rev., 44, 2584, 10.1039/C5CS90037A

Yuan, 2015, Acc. Chem. Res., 48, 81, 10.1021/ar5003297

Dresselhaus, 1987, MRS Bull., 12, 24, 10.1557/S0883769400068093

Dresselhaus, 2008, Phys. Today, 37, 60, 10.1063/1.2916162

Huang, 2013, Chem. Soc. Rev., 42, 1934, 10.1039/c2cs35387c

Gamble, 1971, Science, 174, 493, 10.1126/science.174.4008.493

Prober, 1977, Phys. Rev. B: Solid State, 15, 5245, 10.1103/PhysRevB.15.5245

Bonaccorso, 2010, Nat. Photonics, 4, 611, 10.1038/nphoton.2010.186

Jung, 2014, Nano Convergence, 1, 1, 10.1186/s40580-014-0018-2

Radisavljevic, 2011, Nat. Nanotechnol., 6, 147, 10.1038/nnano.2010.279

Lopez-Sanchez, 2013, Nat. Nanotechnol., 8, 497, 10.1038/nnano.2013.100

Wu, 2014, Nature, 514, 470, 10.1038/nature13792

Zhu, 2015, Nat. Nanotechnol., 10, 151, 10.1038/nnano.2014.309

Voiry, 2013, Nat. Mater., 12, 850, 10.1038/nmat3700

Mak, 2010, Phys. Rev. Lett., 105

Cao, 2012, Nat. Commun., 3, 887, 10.1038/ncomms1882

Mak, 2012, Nat. Nanotechnol., 7, 494, 10.1038/nnano.2012.96

Wang, 2013, Proc. Natl. Acad. Sci. U. S. A., 110, 19701, 10.1073/pnas.1316792110

Kong, 2013, Nano Lett., 13, 1341, 10.1021/nl400258t

Jung, 2014, ACS Nano, 8, 9550, 10.1021/nn503853a

Jung, 2014, Nano Lett., 14, 6842, 10.1021/nl502570f

Georgiou, 2013, Nat. Nanotechnol., 8, 100, 10.1038/nnano.2012.224

Britnell, 2013, Science, 340, 1311, 10.1126/science.1235547

Furchi, 2014, Nano Lett., 14, 4785, 10.1021/nl501962c

Ross, 2014, Nat. Nanotechnol., 9, 268, 10.1038/nnano.2014.26

Huang, 2014, Nat. Mater., 13, 1096, 10.1038/nmat4064

Novoselov, 2004, Science, 306, 666, 10.1126/science.1102896

Coleman, 2011, Science, 331, 568, 10.1126/science.1194975

Nicolosi, 2013, Science, 340, 1420, 10.1126/science.1226419

Park, 2009, Nat. Nanotechnol., 4, 217, 10.1038/nnano.2009.58

Dikin, 2007, Nature, 448, 457, 10.1038/nature06016

Dreyer, 2010, Chem. Soc. Rev., 39, 228, 10.1039/B917103G

Osada, 2009, J. Mater. Chem., 19, 2503, 10.1039/b820160a

Treacy, 1990, Chem. Mater., 2, 279, 10.1021/cm00009a018

Shih, 2011, Nat. Nanotechnol., 6, 439, 10.1038/nnano.2011.94

Eda, 2011, Nano Lett., 11, 5111, 10.1021/nl201874w

Jeffery, 2014, J. Phys. Chem. C, 118, 1386, 10.1021/jp410918c

Jeffery, 2015, RSC Adv., 5, 51176, 10.1039/C5RA08402D

Liu, 2015, Adv. Mater., 27, 4837, 10.1002/adma.201502134

Zheng, 2014, Nat. Commun., 5, 2995, 10.1038/ncomms3995

Koski, 2012, J. Am. Chem. Soc., 134, 13773, 10.1021/ja304925t

Motter, 2014, Chem. Mater., 26, 2313, 10.1021/cm500242h

Koski, 2012, J. Am. Chem. Soc., 134, 7584, 10.1021/ja300368x

Wang, 2015, ACS Nano, 9, 3226, 10.1021/acsnano.5b00336

Chen, 2015, J. Am. Chem. Soc., 137, 5431, 10.1021/jacs.5b00666

Zeng, 2011, Angew. Chem., Int. Ed., 50, 11093, 10.1002/anie.201106004

Peng, 2009, Nano Res., 2, 327, 10.1007/s12274-009-9030-y

Voiry, 2013, Nano Lett., 13, 6222, 10.1021/nl403661s

Kappera, 2014, Nat. Mater., 13, 1128, 10.1038/nmat4080

Wang, 2015, Chem. Soc. Rev., 44, 2664, 10.1039/C4CS00287C

Lukowski, 2013, J. Am. Chem. Soc., 135, 10274, 10.1021/ja404523s

Wang, 2014, ACS Nano, 8, 4940, 10.1021/nn500959v

Lu, 2014, Nat. Commun., 5, 43435

Du, 2010, Chem. Commun., 46, 1106, 10.1039/B920277C

Xiao, 2010, Chem. Mater., 22, 4522, 10.1021/cm101254j

Liu, 2015, Small, 11, 5556, 10.1002/smll.201501822

Cha, 2013, Nano Lett., 13, 5913, 10.1021/nl402937g

Yao, 2014, Nat. Commun., 5, 5670, 10.1038/ncomms6670

Bao, 2014, Nat. Commun., 5, 4224, 10.1038/ncomms5224

Dresselhaus, 2007, Adv. Mater., 19, 1043, 10.1002/adma.200600527

Wan, 2011, J. Electron. Mater., 40, 1271, 10.1007/s11664-011-1565-5

Lu, 2014, Nanoscale, 6, 4566, 10.1039/C4NR00783B

Cho, 2014, Nat. Commun., 5, 4083, 10.1038/ncomms5083

Withers, 2014, Nano Lett., 14, 3987, 10.1021/nl501355j

Morosan, 2006, Nat. Phys., 2, 544, 10.1038/nphys360

Burrard-Lucas, 2013, Nat. Mater., 12, 15, 10.1038/nmat3464

Ge, 2015, Nat. Mater., 14, 285, 10.1038/nmat4153

Hor, 2010, Phys. Rev. Lett., 104, 057001, 10.1103/PhysRevLett.104.057001

Morosan, 2007, Phys. Rev. B: Condens. Matter, 75, 104401, 10.1103/PhysRevB.75.104401

Hardy, 2015, Phys. Rev. B:Condens. Matter, 91, 054426, 10.1103/PhysRevB.91.054426

Liu, 2015, Nano Res., 8, 3982, 10.1007/s12274-015-0901-0

Xiong, 2015, Angew. Chem., Int. Ed., 54, 546, 10.1002/anie.201409653

Wan, 2015, Nat. Mater., 14, 622, 10.1038/nmat4251